Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Novel light regimes in European forests

Abstract

Tree canopies are one of the most recognizable features of forests, providing shelter from external influences to a myriad of species that live within and below the tree foliage. Canopy disturbances are now increasing across European forests, and climate-change-induced drought is a key driver, together with pests and pathogens, storms and fire. These disturbances are opening the canopy and exposing below-canopy biodiversity and functioning to novel light regimes—spatial and temporal characteristics of light distribution at forest floors not found previously. The majority of forest biodiversity occurs in the shade within and below tree canopies, and numerous ecosystem processes are regulated at the forest floor. Altered light regimes, in interaction with other global change drivers, can thus strongly impact forest biodiversity and functioning. As recent European droughts are unprecedented in the past two millennia, and this has initiated probably the largest pulse of forest disturbances in almost two centuries, we urgently need to quantify, understand and predict the impacts of novel light regimes on below-canopy forest biodiversity and functions. This will be a crucial element in delivering much-needed information for policymakers and managers to adapt European forests to future no-analogue conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Drought in Europe and the unique position of drought compared with other forest disturbances.
Fig. 2: Examples of canopy opening across Europe resulting in novel light regimes below the canopies.
Fig. 3: Schematic representation of novel light regimes in European forests.

Similar content being viewed by others

References

  1. Lowman, M. D. & Wittman, P. K. Forest canopies: methods, hypotheses, and future directions. Annu. Rev. Ecol. Syst. 27, 55–81 (1996).

    Article  Google Scholar 

  2. Gilliam, F. (ed.) The Herbaceous Layer in Forests of Eastern North America (Oxford Univ. Press, 2014).

  3. De Frenne, P. et al. Global buffering of temperatures under forest canopies. Nat. Ecol. Evol. 3, 744–749 (2019).

    Article  PubMed  Google Scholar 

  4. Senior, R. A., Hill, J. K., Benedick, S. & Edwards, D. P. Tropical forests are thermally buffered despite intensive selective logging. Glob. Change Biol. 24, 1267–1278 (2018).

    Article  ADS  Google Scholar 

  5. Frey, S. J. K. et al. Spatial models reveal the microclimatic buffering capacity of old-growth forests. Sci. Adv. 2, e1501392 (2016).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  6. Verheyen, K. et al. Driving factors behind the eutrophication signal in understorey plant communities of deciduous temperate forests. J. Ecol. 100, 352–365 (2012).

    Article  Google Scholar 

  7. Boyle, M. J. W. et al. Localised climate change defines ant communities in human-modified tropical landscapes. Funct. Ecol. 35, 1094–1108 (2021).

    Article  CAS  Google Scholar 

  8. De Frenne, P. et al. Forest microclimates and climate change: importance, drivers and future research agenda. Glob. Change Biol. 27, 2279–2297 (2021).

    Article  ADS  Google Scholar 

  9. De Frenne, P. et al. Microclimate moderates plant responses to macroclimate warming. Proc. Natl Acad. Sci. USA 110, 18561–18565 (2013).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  10. Zellweger, F. et al. Forest microclimate dynamics drive plant responses to warming. Science 368, 772–775 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. McDowell, N. G. et al. Pervasive shifts in forest dynamics in a changing world. Science 368, eaaz9463 (2020).

    Article  CAS  PubMed  Google Scholar 

  12. Senf, C. & Seidl, R. Persistent impacts of the 2018 drought on forest disturbance regimes in Europe. Biogeosciences 18, 5223–5230 (2021).

    Article  ADS  Google Scholar 

  13. Ceccherini, G. et al. Abrupt increase in harvested forest area over Europe after 2015. Nature 583, 72–77 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. State of Europe’s Forests 2020, https://foresteurope.org/state-europes-forests-2020/ (Forest Europe, 2020).

  15. Pretzsch, H., Biber, P., Schütze, G., Uhl, E. & Rötzer, T. Forest stand growth dynamics in central Europe have accelerated since 1870. Nat. Commun. 5, 4967 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Senf, C. & Seidl, R. Mapping the forest disturbance regimes of Europe. Nat. Sustain. 4, 63–70 (2021).

    Article  Google Scholar 

  17. Hartmann, H. et al. Climate change risks to global forest health: emergence of unexpected events of elevated tree mortality worldwide. Annu. Rev. Plant Biol. 73, 673–702 (2022).

    Article  CAS  PubMed  Google Scholar 

  18. Patacca, M. et al. Significant increase in natural disturbance impacts on European forests since 1950. Glob. Change Biol. 29, 1359–1376 (2023).

    Article  CAS  Google Scholar 

  19. Samaniego, L. et al. Anthropogenic warming exacerbates European soil moisture droughts. Nat. Clim. Change 8, 421–426 (2018).

    Article  ADS  Google Scholar 

  20. Büntgen, U. et al. Recent European drought extremes beyond Common Era background variability. Nat. Geosci. 14, 190–196 (2021).

    Article  ADS  Google Scholar 

  21. Vicente-Serrano, S. M. et al. A new global 0.5 gridded dataset (1901–2006) of a multiscalar drought index: comparison with current drought index datasets based on the Palmer Drought Severity Index. J. Hydrometeorol. 11, 1033–1043 (2010).

    Article  ADS  Google Scholar 

  22. Brodribb, T. J., Powers, J., Cochard, H. & Choat, B. Hanging by a thread? Forests and drought. Science 368, 261–266 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Brodribb, T. J. & Cochard, H. Hydraulic failure defines the recovery and point of death in water-stressed conifers. Plant Physiol. 149, 575–584 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nagel, T. A. et al. The natural disturbance regime in forests of the Dinaric Mountains: a synthesis of evidence. For. Ecol. Manage. 388, 29–42 (2017).

    Article  Google Scholar 

  25. Sousa-Silva, R. et al. Tree diversity mitigates defoliation after a drought-induced tipping point. Glob. Change Biol. 24, 4304–4315 (2018).

    Article  ADS  Google Scholar 

  26. Pollastrini, M., Puletti, N., Selvi, F., Iacopetti, G. & Busotti, F. Widespread crown defoliation after a drought and heat wave in the forests of Tuscany (central Italy) and their recovery—a case study from summer 2017. Front. For. Glob. Change 2, 74 (2019).

    Article  Google Scholar 

  27. Anderegg, W. R. et al. Climate-driven risks to the climate mitigation potential of forests. Science 368, eaaz7005 (2020).

    Article  CAS  PubMed  Google Scholar 

  28. Senf, C. et al. Canopy mortality has doubled in Europe’s temperate forests over the last three decades. Nat. Commun. 9, 4978 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  29. Seidl, R. et al. Forest disturbances under climate change. Nat. Clim. Change 7, 395–402 (2017).

    Article  ADS  Google Scholar 

  30. Roberts, M. R. Response of the herbaceous layer to natural disturbance in North American forests. Can. J. Bot. 82, 1273–1283 (2004).

    Article  Google Scholar 

  31. Sayer, E. J., Heard, M. S., Grant, H. K., Marthews, T. R. & Tanner, E. V. J. Soil carbon release enhanced by increased tropical forest litterfall. Nat. Clim. Change 1, 304–307 (2011).

    Article  ADS  CAS  Google Scholar 

  32. Nilsson, M. C. & Wardle, D. A. Understory vegetation as a forest ecosystem driver: evidence from the northern Swedish boreal forest. Front. Ecol. Environ. 3, 421–428 (2005).

    Article  Google Scholar 

  33. Landuyt, D. et al. The functional role of temperate forest understorey vegetation in a changing world. Glob. Change Biol. 25, 3625–3641 (2019).

    Article  ADS  Google Scholar 

  34. Lendzion, J. & Leuschner, C. Temperate forest herbs are adapted to high air humidity—evidence from climate chamber and humidity manipulation experiments in the field. Can. J. For. Res. 39, 2332–2342 (2009).

    Article  Google Scholar 

  35. Hardwick, S. R. et al. The relationship between leaf area index and microclimate in tropical forest and oil palm plantation: forest disturbance drives changes in microclimate. Agric. For. Meteorol. 201, 187–195 (2015).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  36. Zellweger, F. et al. Seasonal drivers of understorey temperature buffering in temperate deciduous forests across Europe. Glob. Ecol. Biogeogr. 28, 1774–1786 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  37. De Frenne, P. et al. Light accelerates plant responses to warming. Nat. Plants 1, 15110 (2015).

    Article  PubMed  Google Scholar 

  38. Dietz, L. et al. Windstorm‐induced canopy openings accelerate temperate forest adaptation to global warming. Glob. Ecol. Biogeogr. 29, 2067–2077 (2020).

    Article  Google Scholar 

  39. Hylander, K., Greiser, C., Christiansen, D. M. & Koelemeijer, I. A. Climate adaptation of biodiversity conservation in managed forest landscapes. Conserv. Biol. 36, e13847 (2022).

    Article  PubMed  Google Scholar 

  40. Williams, J. W. & Jackson, S. T. Novel climates, no‐analog communities, and ecological surprises. Front. Ecol. Environ. 5, 475–482 (2007).

    Article  Google Scholar 

  41. Hanewinkel, M., Cullmann, D. A., Schelhaas, M. J., Nabuurs, G. J. & Zimmermann, N. E. Climate change may cause severe loss in the economic value of European forest land. Nat. Clim. Change 3, 203–207 (2013).

    Article  ADS  Google Scholar 

  42. Batllori, E. et al. Forest and woodland replacement patterns following drought-related mortality. Proc. Natl Acad. Sci. USA 117, 29720–29729 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  43. Fung Au, T. et al. Younger trees in the upper canopy are more sensitive but also more resilient to drought. Nat. Clim. Change 12, 1168–1174 (2022).

    Article  ADS  Google Scholar 

  44. Bennett, A. C., McDowell, N. G., Allen, C. D. & Anderson-Teixeira, K. J. Larger trees suffer most during drought in forests worldwide. Nat. Plants 1, 15139 (2015).

    Article  PubMed  Google Scholar 

  45. Gentilesca, T., Camarero, J. J., Colangelo, M., Nolè, A. & Ripullone, F. Drought-induced oak decline in the western Mediterranean region: an overview on current evidences, mechanisms and management options to improve forest resilience. iForest 10, 796–806 (2016).

    Article  Google Scholar 

  46. Schuldt, B. et al. A first assessment of the impact of the extreme 2018 summer drought on central European forests. Basic Appl. Ecol. 45, 86–103 (2020).

    Article  Google Scholar 

  47. Bachofen, C. et al. Stand structure of central European forests matters more than climate for transpiration sensitivity to VPD. J. Appl. Ecol. 60, 886–897 (2023).

    Article  CAS  Google Scholar 

  48. Segar, J. et al. Divergent roles of herbivory in eutrophying forests. Nat. Commun. 13, 7837 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  49. Blondeel, H. et al. The need for an understory decision support system for temperate deciduous forest management. For. Ecol. Manage. 480, 118634 (2021).

    Article  Google Scholar 

  50. Findlater, K., Kozak, R. & Hagerman, S. Difficult climate-adaptive decisions in forests as complex social–ecological systems. Proc. Natl Acad. Sci. USA 119, e2108326119 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Thom, D. et al. The impacts of climate change and disturbance on spatio-temporal trajectories of biodiversity in a temperate forest landscape. J. Appl. Ecol. 54, 28–38 (2017).

    Article  PubMed  Google Scholar 

  52. Koelemeijer, I. A. et al. Interactive effects of drought and edge exposure on old-growth forest understory species. Landsc. Ecol. 37, 1839–1853 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Qie, L. et al. Drought cuts back regeneration in logged tropical forests. Environ. Res. Lett. 14, 045012 (2019).

    Article  ADS  Google Scholar 

  54. Verheyen, K. et al. Combining biodiversity resurveys across regions to advance global change research. Bioscience 67, 73–83 (2017).

    Article  Google Scholar 

  55. Bruelheide, H. et al. sPlot—a new tool for global vegetation analyses. J. Veg. Sci. 30, 161–186 (2019).

    Article  Google Scholar 

  56. Archaux, F. & Wolters, V. Impact of summer drought on forest biodiversity: what do we know? Ann. For. Sci. 63, 645–652 (2006).

    Article  Google Scholar 

  57. Hoover, D. L., Wilcox, K. R. & Young, K. E. Experimental droughts with rainout shelters: a methodological review. Ecosphere 9, e02088 (2018).

    Article  Google Scholar 

  58. Bugmann, H. & Seidl, R. The evolution, complexity and diversity of models of long-term forest dynamics. J. Ecol. 110, 2288–2307 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Rammer, W. & Seidl, R. A scalable model of vegetation transitions using deep neural networks. Methods Ecol. Evol. 10, 879–890 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Sanczuk, P. et al. Microclimate and forest density drive plant population dynamics under climate change. Nat. Clim. Change 13, 840–847 (2023).

    Article  ADS  Google Scholar 

  61. Calders, K. et al. Terrestrial laser scanning in forest ecology: expanding the horizon. Remote Sens. Environ. 251, 112102 (2020).

    Article  Google Scholar 

  62. Webster, C., Essery, R., Mazzotti, G. & Jones, T. Using just a canopy height model to obtain lidar-level accuracy in 3D forest canopy shortwave transmissivity estimates. Agric. For. Meteorol. 338, 109429 (2023).

    Article  Google Scholar 

  63. EU Forest Strategy to 2030, https://environment.ec.europa.eu/strategy/forest-strategy_en (European Commission, accessed 9 June 2023).

Download references

Acknowledgements

I thank my colleagues at the Forest & Nature Lab and J. Lenoir, F. Zellweger, R. Seidl, T. Jucker, F. Rodríguez-Sánchez, Ø. Opedal, S. Caluwaerts, M. Baele, D. Miralles, K. Calders and H. Verbeeck for extensive discussions and comments on earlier versions of this idea and/or manuscript. I also thank K. De Pauw, C. Greiser, W. Maes, T. Nagel, F. Selvi, F. Rodríguez-Sánchez and P. Sanczuk for help with the figures. I received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (ERC Starting Grant FORMICA 757833).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pieter De Frenne.

Ethics declarations

Competing interests

The author declares no competing interests.

Peer review

Peer review information

Nature Ecology & Evolution thanks Nidhi Vinod, Henry Adams and Marion Pfeifer for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Conceptual diagram showing how novel combinations of levels of light, and frequencies, return intervals, extent, and durations of high light lead to novel light-regimes.

In this example, the high-light return interval (X-axis) and size of the area of high light (Y-axis) increase when entire regions are hit more frequently by summer droughts due to anthropogenic climate change leading to large-scale tree defoliation and mortality. The zone of novel light regimes is shaded in green. Similar examples can be made with other spatial and temporal characteristics of light distribution at forest floors not found previously.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Frenne, P. Novel light regimes in European forests. Nat Ecol Evol 8, 196–202 (2024). https://doi.org/10.1038/s41559-023-02242-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-023-02242-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing