Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Evidence for widespread thermal optimality of ecosystem respiration

Abstract

Ecosystem respiration (ER) is among the largest carbon fluxes between the biosphere and the atmosphere. Understanding the temperature response of ER is crucial for predicting the climate change–carbon cycle feedback. However, whether there is an apparent optimum temperature of ER (\({{T}}_{{\rm{opt}}}^{\,{\rm{ER}}}\)) and how it changes with temperature remain poorly understood. Here we analyse the temperature response curves of ER at 212 sites from global FLUXNET. We find that ER at 183 sites shows parabolic temperature response curves and \({{T}}_{{\rm{opt}}}^{\,{\rm{ER}}}\) at which ER reaches the maximum exists widely across biomes around the globe. Among the 15 biotic and abiotic variables examined, \({{T}}_{{\rm{opt}}}^{\,{\rm{ER}}}\) is mostly related to the optimum temperature of gross primary production (GPP, \({{T}}_{{\rm{opt}}}^{\,{\rm{GPP}}}\)) and annual maximum daily temperature (Tmax). In addition, \({{T}}_{{\rm{opt}}}^{\,{\rm{ER}}}\) linearly increases with Tmax across sites and over vegetation types, suggesting its thermal adaptation. The adaptation magnitude of \({{T}}_{{\rm{opt}}}^{\,{\rm{ER}}}\), which is measured by the change in \({{T}}_{{\rm{opt}}}^{\,{\rm{ER}}}\) per unit change in Tmax, is positively correlated with the adaptation magnitude of \({{T}}_{{\rm{opt}}}^{\,{\rm{GPP}}}\). This study provides evidence of the widespread existence of \({{T}}_{{\rm{opt}}}^{\,{\rm{ER}}}\) and its thermal adaptation with Tmax across different biomes around the globe. Our findings suggest that carbon cycle models that consider the existence of \({{T}}_{{\rm{opt}}}^{\,{\rm{ER}}}\) and its adaptation have the potential to more realistically predict terrestrial carbon sequestration in a world with changing climate.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Distribution of \({\boldsymbol{T}}_{\mathbf{opt}}^{\,{\mathbf{ER}}}\) derived from flux-tower sites.
Fig. 2: The relationship of \({\boldsymbol{T}}_{{\mathbf{opt}}}^{\,{\mathbf{ER}}}\) to Tmax.
Fig. 3: The relationship between \({{\boldsymbol{T}}}_{{\mathbf{opt}}}^{\,{\mathbf{ER}}}\) and influencing factors.
Fig. 4: Relationship between the thermal adaptation magnitudes of \({{\boldsymbol{T}}}_{{\mathbf{opt}}}^{\,{\mathbf{GPP}}}\) and \({{\boldsymbol{T}}}_{{\mathbf{opt}}}^{\,{\mathbf{ER}}}\) across different vegetation types.
Fig. 5: The relationship between annual ER and \({{\boldsymbol{T}}}_{{\mathbf{opt}}}^{\,{\mathbf{ER}}}\).
Fig. 6: Projections of \({\boldsymbol{T}}_{{\mathbf{opt}}}^{\,{\mathbf{ER}}}\).

Data availability

All FLUXNET data can be downloaded at https://fluxnet.fluxdata.org. Soil properties were retrieved from the Regridded Harmonized World Soil Database v.1.2 in the Oak Ridge National Laboratory Distributed Active Archive Center for Biogeochemical Dynamics (https://daac.ornl.gov/SOILS/guides/HWSD.html). Biomass data were obtained at http://wald.anu.edu.au/data_services/data/global-above-ground-biomass-carbon-v1-0/. Soil moisture used to extract data for sites without providing soil water conditions was obtained from the European Space Agency’s (ESA) Soil Moisture Climate Change Initiative (CCI) project (https://www.esa-soilmoisture-cci.org/). Leaf area index data were obtained from https://www.ncei.noaa.gov/products/climate-data-records/leaf-area-index-and-fapar. Current air temperature and relative humidity data were obtained from the Climatic Research Unit/National Centers for Environmental Protection (CRU/NCEP) 6-hourly dataset (https://data.ucar.edu/en/dataset/cruncep-version-7-atmospheric-forcing-data-for-the-community-land-model). Future daily air temperature and relative humidity data were obtained from the Lawrence Livermore National Library (https://esgf-node.llnl.gov/projects/esgf-llnl/).

Code availability

Code used for data analysis in this study is available at https://figshare.com/articles/online_resource/code_docx/23514492.

References

  1. Wenzel, S., Eyring, V., Gerber, E. P. & Karpechko, A. Y. Constraining future summer austral jet stream positions in the CMIP5 ensemble by process-oriented multiple diagnostic regression. J. Clim. 29, 673–687 (2016).

    Article  Google Scholar 

  2. Valentini, R. et al. Respiration as the main determinant of carbon balance in European forests. Nature 404, 861–865 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Lloyd, J. & Taylor, J. A. On the temperature dependence of soil respiration. Funct. Ecol. 8, 315–323 (1994).

    Article  Google Scholar 

  4. Farquhar, G. D., von Caemmerer, S. & Berry, J. A. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149, 78–90 (1980).

    Article  CAS  PubMed  Google Scholar 

  5. Smith, N. G. & Keenan, T. F. Mechanisms underlying leaf photosynthetic acclimation to warming and elevated CO2 as inferred from least-cost optimality theory. Glob. Chang. Biol. 26, 5202–5216 (2020).

    Article  PubMed  Google Scholar 

  6. Smith, N. G. & Dukes, J. S. Plant respiration and photosynthesis in global-scale models: incorporating acclimation to temperature and CO2. Glob. Chang. Biol. 19, 45–63 (2013).

    Article  PubMed  Google Scholar 

  7. Niu, S. et al. Thermal optimality of net ecosystem exchange of carbon dioxide and underlying mechanisms. New Phytol. 194, 775–783 (2012).

    Article  PubMed  Google Scholar 

  8. Lombardozzi, D. L., Bonan, G. B., Smith, N. G., Dukes, J. S. & Fisher, R. A. Temperature acclimation of photosynthesis and respiration: a key uncertainty in the carbon cycle-climate feedback. Geophys. Res. Lett. 42, 8624–8631 (2015).

    Article  CAS  Google Scholar 

  9. Keppel-Aleks, G. et al. Separating the influence of temperature, drought, and fire on interannual variability in atmospheric CO2. Glob. Biogeochem. Cycles 28, 1295–1310 (2014).

    Article  CAS  Google Scholar 

  10. Friedlingstein, P. et al. Global carbon budget 2019. Earth Syst. Sci. Data 11, 1783–1838 (2019).

    Article  Google Scholar 

  11. Niu, B. et al. Warming homogenizes apparent temperature sensitivity of ecosystem respiration. Sci. Adv. 7, eabc7358 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Mahecha, M. et al. Global convergence in the temperature sensitivity of respiration at ecosystem level. Science 329, 838–840 (2010).

    Article  CAS  PubMed  Google Scholar 

  13. Crous, K. Y., Uddling, J. & De Kauwe, M. G. Temperature responses of photosynthesis and respiration in evergreen trees from boreal to tropical latitudes. New Phytol. 234, 353–374 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Smith, N. G. & Dukes, J. S. Short-term acclimation to warmer temperatures accelerates leaf carbon exchange processes across plant types. Glob. Chang. Biol. 23, 4840–4853 (2017).

    Article  PubMed  Google Scholar 

  15. O’Sullivan, O. S. et al. High-resolution temperature responses of leaf respiration in snow gum (Eucalyptus pauciflora) reveal high-temperature limits to respiratory function. Plant Cell Environ. 36, 1268–1284 (2013).

    Article  PubMed  Google Scholar 

  16. Heskel, M. A. et al. Convergence in the temperature response of leaf respiration across biomes and plant functional types. Proc. Natl Acad. Sci. USA 113, 3832–3837 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Atkin, O. K. & Tjoelker, M. G. Thermal acclimation and the dynamic response of plant respiration to temperature. Trends Plant Sci. 8, 343–351 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Vanderwel, M. C. et al. Global convergence in leaf respiration from estimates of thermal acclimation across time and space. New Phytol. 207, 1026–1037 (2015).

    Article  PubMed  Google Scholar 

  19. Liang, L. L. et al. Macromolecular rate theory (MMRT) provides a thermodynamics rationale to underpin the convergent temperature response in plant leaf respiration. Glob. Chang. Biol. 24, 1538–1547 (2018).

    Article  PubMed  Google Scholar 

  20. Fanin, N. et al. Soil enzymes in response to climate warming: mechanisms and feedbacks. Funct. Ecol. 36, 1378–1395 (2022).

    Article  CAS  Google Scholar 

  21. Yang, Z. et al. Recent photosynthates are the primary carbon source for soil microbial respiration in subtropical forests. Geophys. Res. Lett. 49, e2022GL101147 (2022).

    Article  CAS  Google Scholar 

  22. Tian, W. et al. Thermal adaptation occurs in the respiration and growth of widely distributed bacteria. Glob. Chang. Biol. 28, 2820–2829 (2022).

    Article  CAS  PubMed  Google Scholar 

  23. Yamori, W., Hikosaka, K. & Way, D. A. Temperature response of photosynthesis in C3, C4, and CAM plants: temperature acclimation and temperature adaptation. Photosynth. Res. 119, 101–117 (2014).

    Article  CAS  PubMed  Google Scholar 

  24. Sendall, K. M. et al. Acclimation of photosynthetic temperature optima of temperate and boreal tree species in response to experimental forest warming. Glob. Chang. Biol. 21, 1342–1357 (2015).

    Article  PubMed  Google Scholar 

  25. Sage, R. F. & Kubien, D. S. The temperature response of C3 and C4 photosynthesis. Plant Cell Environ. 30, 1086–1106 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Niu, S. et al. Climatic warming changes plant photosynthesis and its temperature dependence in a temperate steppe of northern China. Environ. Exp. Bot. 63, 91–101 (2008).

    Article  Google Scholar 

  27. Huang, M. et al. Air temperature optima of vegetation productivity across global biomes. Nat. Ecol. Evol. 3, 772–779 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Way, D. A. & Yamori, W. Thermal acclimation of photosynthesis: on the importance of adjusting our definitions and accounting for thermal acclimation of respiration. Photosynth. Res. 119, 89–100 (2014).

    Article  CAS  PubMed  Google Scholar 

  29. Wright, I. J. et al. The worldwide leaf economics spectrum. Nature 428, 821–827 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Tcherkez, G., Boex-Fontvieille, E., Mahé, A. & Hodges, M. Respiratory carbon fluxes in leaves. Curr. Opin. Plant Biol. 15, 308–314 (2012).

    Article  CAS  PubMed  Google Scholar 

  31. O'Leary, B. M., Asao, S., Millar, A. H. & Atkin, O. K. Core principles which explain variation in respiration across biological scales. New Phytol. 222, 670–686 (2019).

    Article  PubMed  Google Scholar 

  32. Noguchi, K. & Yoshida, K. Interaction between photosynthesis and respiration in illuminated leaves. Mitochondrion 8, 87–99 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Hoefnagel, M. H. N., Atkin, O. K. & Wiskich, J. T. Interdependence between chloroplasts and mitochondria in the light and the dark. Biochim. Biophys. Acta Bioenerg. 1366, 235–255 (1998).

    Article  CAS  Google Scholar 

  34. Hogberg, P. et al. Large-scale forest girdling shows that current photosynthesis drives soil respiration. Nature 411, 789–792 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Hartley, I. P. et al. The dependence of respiration on photosynthetic substrate supply and temperature: integrating leaf, soil and ecosystem measurements. Glob. Chang. Biol. 12, 1954–1968 (2006).

    Article  Google Scholar 

  36. Ziska, L. H. & Bunce, J. A. The influence of increasing growth temperature and CO2 concentration on the ratio of respiration to photosynthesis in soybean seedlings. Glob. Chang. Biol. 4, 637–643 (1998).

    Article  Google Scholar 

  37. Waring, R. H., Landsberg, J. J. & Williams, M. Net primary production of forests: a constant fraction of gross primary production? Tree Physiol. 18, 129–134 (1998).

    Article  PubMed  Google Scholar 

  38. Van Oijen, M., Schapendonk, A. & Hoglind, M. On the relative magnitudes of photosynthesis, respiration, growth and carbon storage in vegetation. Ann. Bot. 105, 793–797 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Gifford, R. M. Plant respiration in productivity models: conceptualisation, representation and issues for global terrestrial carbon-cycle research. Funct. Plant Biol. 30, 171–186 (2003).

    Article  PubMed  Google Scholar 

  40. Loveys, B. R., Scheurwater, I., Pons, T. L., Fitter, A. H. & Atkin, O. K. Growth temperature influences the underlying components of relative growth rate: an investigation using inherently fast- and slow-growing plant species. Plant Cell Environ. 25, 975–987 (2002).

    Article  Google Scholar 

  41. Loveys, B. R. et al. Thermal acclimation of leaf and root respiration: an investigation comparing inherently fast- and slow-growing plant species. Glob. Chang. Biol. 9, 895–910 (2003).

    Article  Google Scholar 

  42. Atkin, O. K., Cheurwater, I. & Pons, T. L. High thermal acclimation potential of both photosynthesis and respiration in two lowland Plantago species in contrast to an alpine congeneric. Glob. Chang. Biol. 12, 500–515 (2006).

    Article  Google Scholar 

  43. Atkin, O. K., Bruhn, D., Hurry, V. M. & Tjoelker, M. G. The hot and the cold: unravelling the variable response of plant respiration to temperature. Funct. Plant Biol. 32, 87–105 (2005).

    Article  PubMed  Google Scholar 

  44. Wang, H. et al. Acclimation of leaf respiration consistent with optimal photosynthetic capacity. Glob. Chang. Biol. 26, 2573–2583 (2020).

    Article  Google Scholar 

  45. Dusenge, M. E., Madhavji, S. & Way, D. A. Contrasting acclimation responses to elevated CO2 and warming between an evergreen and a deciduous boreal conifer. Glob. Chang. Biol. 26, 3639–3657 (2020).

    Article  PubMed  Google Scholar 

  46. Dacal, M., Bradford, M. A., Plaza, C., Maestre, F. T. & García-Palacios, P. Soil microbial respiration adapts to ambient temperature in global drylands. Nat. Ecol. Evol. 3, 232–238 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Smith, N. G., Malyshev, S. L., Shevliakova, E., Kattge, J. & Dukes, J. S. Foliar temperature acclimation reduces simulated carbon sensitivity to climate. Nat. Clim. Change 6, 407–411 (2015).

    Article  Google Scholar 

  48. Huntingford, C. et al. Implications of improved representations of plant respiration in a changing climate. Nat. Commun. 8, 1602 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Alvarez, G. et al. Catalytic power of enzymes decreases with temperature: new insights for understanding soil C cycling and microbial ecology under warming. Glob. Chang. Biol. 24, 4238–4250 (2018).

    Article  PubMed  Google Scholar 

  50. Duffy, K. A. et al. How close are we to the temperature tipping point of the terrestrial biosphere? Sci. Adv. 7, eaay1052 (2020).

    Article  Google Scholar 

  51. Atkin, O. K. et al. Using temperature-dependent changes in leaf scaling relationships to quantitatively account for thermal acclimation of respiration in a coupled global climate-vegetation model. Glob. Chang. Biol. 14, 2709–2726 (2008).

    Article  Google Scholar 

  52. Janzen, D. H. Why mountain passes are higher in tropics. Am. Nat. 101, 233–249 (1967).

    Article  Google Scholar 

  53. Stitt, M. & Hurry, V. A plant for all seasons: alterations in photosynthetic carbon metabolism during cold acclimation in Arabidopsis. Curr. Opin. Plant Biol. 5, 199–206 (2002).

    Article  CAS  PubMed  Google Scholar 

  54. Gifford, R. M. Whole plant respiration and photosynthesis of wheat under increased CO2 concentration and temperature-long-term vs short-term distinctions for modelling. Glob. Chang. Biol. 1, 385–396 (1995).

    Article  Google Scholar 

  55. Dewar, R. C., Medlyn, B. E. & Mcmurtrie, R. E. Acclimation of the respiration/photosynthesis ratio to temperature: insights from a model. Glob. Chang. Biol. 5, 615–622 (1999).

    Article  Google Scholar 

  56. Lambers, H., Chapin, F. S. & Pons, T. L. Plant Physiological Ecology (Springer, 1998).

  57. Korner, C. & Larcher, W. Plant life in cold climates. Symp. Soc. Exp. Biol. 42, 25–57 (1988).

    CAS  PubMed  Google Scholar 

  58. Atkin, O. K. et al. Global variability in leaf respiration in relation to climate, plant functional types and leaf traits. New Phytol. 206, 614–636 (2015).

    Article  CAS  PubMed  Google Scholar 

  59. Ryan, M. G. & Asao, S. Clues for our missing respiration model. New Phytol. 222, 1167–1170 (2019).

    Article  PubMed  Google Scholar 

  60. Reich, P. B. The carbon dioxide exchange. Science 329, 774–775 (2010).

    Article  CAS  PubMed  Google Scholar 

  61. Collalti, A. & Prentice, I. C. Is NPP proportional to GPP? Waring’s hypothesis 20 years on. Tree Physiol. 39, 1473–1483 (2019).

    Article  CAS  PubMed  Google Scholar 

  62. Pastorello, G. et al. The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data. Sci. Data 7, 225 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Vickers, D., Thomas, C. K., Martin, J. G. & Law, B. Self-correlation between assimilation and respiration resulting from flux partitioning of eddy-covariance CO2 fluxes. Agric. For. Meteorol. 149, 1552–1555 (2009).

    Article  Google Scholar 

  64. Lasslop, G. et al. Separation of net ecosystem exchange into assimilation and respiration using a light response curve approach: critical issues and global evaluation. Glob. Chang. Biol. 16, 187–208 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (31988102), the National Key Technology R & D Program of China (2022YFF0802102) and the International Partnership Program of the Chinese Academy of Science (177GJHZ2022020BS). We used the eddy-covariance data of the FLUXNET community by the following networks: AmeriFlux, AfriFlux, AsiaFlux, CarboAfrica, CarboEuropeIP, CarboItaly, CarboMont, ChinaFlux, Fluxnet-Canada, GreenGrass, ICOS, KoFlux, LBA, NECC, OzFlux-TERN, TCOS-Siberia, Swiss FluxNet and USCCC. The ERA-Interim reanalysis data were provided by ECMWF and processed by Laboratoire des sciences du climat et de l’environnement (LSCE). The FLUXNET eddy-covariance data processing and harmonization was carried out by the European Fluxes Database Cluster and the AmeriFlux Management Project (with support by European Union H2020 projects and the US Department of Energy Office of Science, respectively), with contributions from the Carbon Dioxide Information Analysis Center, ICOS Ecosystem Thematic Centre, and OzFlux, ChinaFlux and AsiaFlux offices.

Author information

Authors and Affiliations

Authors

Contributions

W.C. and S.N. conceived the ideas and designed the study. W.C. and S.W. collected and analysed the data. W.C. and S.N. wrote the first draft of the manuscript. J.W., J.X., Y.L. and G.Y. offered thoughts on the analysis and contributed critically to the writing through multiple rounds of revisions.

Corresponding author

Correspondence to Shuli Niu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Ecology & Evolution thanks Kristine Crous and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Response of ecosystem respiration (ER) to daily temperature at the 11 sites from 11 different vegetation types.

Points and Error bars indicate mean ± s.d. for each temperature bin. The vegetation types are as follows: (a) croplands (CRO), (b) deciduous broadleaf forests (DBF), (c) deciduous needle-leaf forest (DNF), (d) evergreen needle leaf forests (ENF), (e) evergreen broadleaf forests (EBF), (f) grasslands (GRA), (g) mixed forests (MF), (h) opened shrublands (OSH), (i) savanna (SAV), (j) wetlands (WET), (k) woody savanna (WSA).

Extended Data Fig. 2 Goodness-of-fit of the fitted quadratic function at \({{\boldsymbol{T}}}_{{\mathbf{opt}}}^{\,{\mathbf{ER}}}\) for the 183 sites with temperature optima.

(a) Distribution of adjusted R square of the fitted quadratic function. (b) Distribution of P value of the fitted quadratic function at the 0.05 level.

Extended Data Fig. 3 Bivariate plots between \({{\boldsymbol{T}}}_{{\mathbf{opt}}}^{\,{\mathbf{ER}}}\) and influencing variables. Symbol point size is proportional to numbers of site-years in each site.

The influencing variables are as follows: (a) annual minimum daily temperature (Tmin, °C); (b) growing season temperature (GST, °C); (c) vapor pressure deficit (VPD, kPa); (d) mean annual temperature (MAT, °C); (e) mean annual precipitation (MAP, mm yr−1); (f) global solar radiation (GSR, W/m2); -(g) soil moisture (SM); (h) aridity index (AI); (i) aboveground biomass (Biomass, Mg ha-1), soil growing season temperature (GST, °C); vapor pressure deficit (VPD, kPa); soil moisture (SM); aridity index (AI); aboveground biomass (Biomass, Mg ha-1), (j) soil organic carbon (SOC, %), (k) soil pH (pH), (l) clay fraction (Clay, %) (m) soil bulk density (BD, kg dm−3).

Extended Data Fig. 4 The relationship of \({{\boldsymbol{T}}}_{{\mathbf{opt}}}^{\,{\mathbf{ER}}}\) with maximum temperature (Tmax) (a) and \({{\boldsymbol{T}}}_{{\mathbf{opt}}}^{\,{\mathbf{GPP}}}\) (b) across years at the 15 sites with > 10 years of data.

Each colored line indicates one site. The red dotted line was the fixed-effect linear regression slope between sites considering site-level random effects estimated from the linear-mixed model.

Extended Data Fig. 5 Adaptation magnitude of GPP and ER among different vegetation types.

The adaptation magnitude of \({{T}}_{{\rm{opt}}}^{\,{\rm{ER}}}\) or \({{T}}_{{\rm{opt}}}^{\,{\rm{GPP}}}\) was calculated as the slope between \({{T}}_{{\rm{opt}}}^{\,{\rm{ER}}}\) or \({{T}}_{{\rm{opt}}}^{\,{\rm{GPP}}}\) and Tmax. The vegetation types are as follows: croplands (CRO, n = 17), deciduous broadleaf forests (DBF, n = 22), evergreen needle leaf forests (ENF, n = 45), evergreen broadleaf forests (EBF, n = 10), grasslands (GRA, n = 35), mixed forests (MF, n = 8), opened shrublands (OSH, n = 14), wetlands (WET, n = 17) and savanna (SAV, n = 13). Points and error bars indicate mean ± 95% confidence intervals.

Extended Data Fig. 6

Comparison of modeled \({{T}}_{{\rm{opt}}}^{\,{\rm{ER}}}\) with the compiled \({{T}}_{{\rm{opt}}}^{\,{\rm{ER}}}\) (R2 = 0.70; P < 0.001).

Extended Data Fig. 7

Uncertainty of global estimation of \({{\boldsymbol{T}}}_{{\mathbf{opt}}}^{\,{\mathbf{ER}}}\) with an empirical model. (a) Current uncertainty. (b) Future uncertainty under SSP2-4.5 scenario.

Supplementary information

Supplementary Information

Supplementary Figs. 1–5, Discussion and Tables 1–5.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, W., Wang, S., Wang, J. et al. Evidence for widespread thermal optimality of ecosystem respiration. Nat Ecol Evol 7, 1379–1387 (2023). https://doi.org/10.1038/s41559-023-02121-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-023-02121-w

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing