Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

Successful implementation of global targets to reduce nutrient and pesticide pollution requires suitable indicators

Indicators proposed for nutrient and pesticide pollution in the current text of the Convention on Biological Diversity’s post-2020 Global Biodiversity Framework (GBF) are inadequate for tracking progress and informing policy. We highlight a set of more relevant pollution indicators that would strengthen the monitoring framework of the GBF and discuss conditions for their successful implementation.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Primary sources of pollution and proposed indicators for nutrient and pesticide pollution for the monitoring framework of the GBF.

References

  1. IPBES. Summary For Policymakers Of The Global Assessment Report On Biodiversity And Ecosystem Services (IPBES, 2019).

  2. CBD. Kunming-Montreal Global Biodiversity Framework (CBD/COP/15/L.25) (CBD, 2022).

  3. CBD. Monitoring Framework For The Kunming-Montreal Global Biodiversity Framework (CBD/COP/15/L.26) (CBD, 2022).

  4. CBD. Mechanisms For Planning, Monitoring, Reporting And Review (CBD/COP/15/L.27) (CBD, 2022).

  5. CBD. Science Briefs On Targets, Goals, And Monitoring In Support Of The Post-2020 Global Biodiversity Framework Negotiations (CBD/WG2020/4/INF/2/Rev.2) (CBD, 2022).

  6. United Nations Environment Program (UNEP). Understanding The State Of The Ocean: A Global Manual On Measuring SDG 14.1.1, SDG 14.2.1 And SDG 14.5.1 (UNEP, 2021).

  7. Kanter, D. R., Chodos, O., Nordland, O., Rutigliano, M. & Winiwarter, W. Nat. Sustain. 3, 956–963 (2020).

    Article  Google Scholar 

  8. Dukes, E. et al. Sustain. Clim. Change 14, 415–423 (2021).

    Google Scholar 

  9. Zhang, X. et al. Nature 528, 51–59 (2015).

    Article  CAS  PubMed  Google Scholar 

  10. Tang, F. H. M., Lenzen, M., McBratney, A. & Maggi, F. Nat. Geosci. 14, 206–210 (2021).

    Article  CAS  Google Scholar 

  11. Schulz, R., Bub, S., Petschick, L. L., Stehle, S. & Wolfram, J. Science 372, 81–84 (2021).

    Article  CAS  PubMed  Google Scholar 

  12. Wolf, M. J. et al. 2022 Environmental Performance Index (Yale Center for Environmental Law & Policy, 2022).

  13. Dietrich, C., Wang, M., Ebeling, M. & Gladbach, A. Environ. Sci. Eur. 34, 16 (2022).

    Article  CAS  Google Scholar 

  14. Kudsk, P., Jørgensen, L. N. & Ørum, J. E. Land Use Policy 70, 384–393 (2018).

    Article  Google Scholar 

  15. de Vries, W., Schulte-Uebbing, L., Kros, H., Voogd, J. C. & Louwagie, G. Sci. Total Environ. 786, 147283 (2021).

    Article  PubMed  Google Scholar 

  16. Schulte-Uebbing, L. F., Beusen, A. H. W., Bouwman, A. F. & de Vries, W. Nature 610, 507–512 (2022).

    Article  CAS  PubMed  Google Scholar 

  17. Tang, F. H., Malik, A., Li, M., Lenzen, M. & Maggi, F. Commun. Earth Environ. 3, 272 (2022).

    Article  Google Scholar 

  18. Winiwarter, W., Höglund-Isaksson, L., Klimont, Z., Schöpp, W. & Amann, M. Environ. Res. Lett. 13, 014011 (2018).

    Article  Google Scholar 

  19. Maggi, F., Tang, F. H. M., la Cecilia, D. & McBratney, A. Sci. Data 6, 170 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Savary, S. et al. Nat. Ecol. Evol. 3, 430–439 (2019).

    Article  PubMed  Google Scholar 

  21. Feuerbacher, A., Luckmann, J., Boysen, O., Zikeli, S. & Grethe, H. PLoS ONE 13, e0199025 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Muller, A. et al. Nat. Commun. 8, 1290 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Möhring, N. et al. Nat. Food 1, 535–540 (2020).

    Article  PubMed  Google Scholar 

  24. Barbieri, P. et al. Nat. Food 2, 363–372 (2021).

    Article  PubMed  Google Scholar 

  25. Pretty, J. Science 362, eaav0294 (2018).

    Article  PubMed  Google Scholar 

  26. Finger, R., Swinton, S. M., El Benni, N. & Walter, A. Annu. Rev. Resour. Econ. 11, 313–335 (2019).

    Article  Google Scholar 

  27. Seufert, V. & Ramankutty, N. Sci. Adv. 3, e1602638 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Möhring, N. & Finger, R. Food Policy 106, 102188 (2022).

    Article  Google Scholar 

  29. Kanter, D. R. & Brownlie, W. J. Environ. Sci. Policy 92, 1–8 (2019).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The Comment is based on a science brief written by the coauthors on pollution targets in support of the post-2020 GBF negotiations.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Niklas Möhring, David Kanter or Paul Leadley.

Ethics declarations

Competing interests

All authors declare no competing interests.

Supplementary information

Supplementary Information

Supplementary Tables 1-2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Möhring, N., Kanter, D., Aziz, T. et al. Successful implementation of global targets to reduce nutrient and pesticide pollution requires suitable indicators. Nat Ecol Evol 7, 1556–1559 (2023). https://doi.org/10.1038/s41559-023-02120-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-023-02120-x

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene