Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A Late Devonian actinopterygian suggests high lineage survivorship across the end-Devonian mass extinction

Abstract

Many accounts of the early history of actinopterygians (ray-finned fishes) posit that the end-Devonian mass extinction had a major influence on their evolution. Existing phylogenies suggest this episode could have acted as a bottleneck, paring the early diversity of the group to a handful of survivors. This picture, coupled with increases in taxonomic and morphological diversity in the Carboniferous, contributes to a model of explosive post-extinction radiation. However, most actinopterygians from within a roughly 20-million year (Myr) window surrounding the extinction are poorly known, contributing to uncertainty about the meaning of these patterns. Here, we report an exceptionally preserved fossil from 7 Myr before the extinction that reveals unexpected anatomical features. Palaeoneiros clackorum gen. et sp. nov. nests within a clade of post-Devonian species and, in an expanded phylogenetic analysis, draws multiple lineages of Carboniferous actinopterygians into the Devonian. This suggests cryptic but extensive lineage diversification in the latest Devonian, followed by more conspicuous feeding and locomotor structure diversification in the Carboniferous. Our revised model matches more complex patterns of divergence, survival and diversification around the Devonian/Carboniferous boundary in other vertebrate clades. It also fundamentally recalibrates the onset of diversification early in the history of this major radiation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Anatomy of Palaeoneiros clackorum MCZ VPF-5114.
Fig. 2: Internal and external anatomy of Palaeoneiros clackorum MCZ VPF-5114.
Fig. 3: Comparative anatomy of Palaeoneiros clackorum with Devonian and Carboniferous actinopterygians.
Fig. 4: Hypotheses of early actinopterygian diversification and timescaled phylogenetic tree.
Fig. 5: Patterns in early ray-finned fish size around the Devonian/Carboniferous boundary.

Similar content being viewed by others

Data availability

The specimen described in this study is deposited in the collections of the Harvard Museum of Comparative Zoology. CT data and derivatives are available on Morphosource (projection series: https://doi.org/10.17602/M2/M417031; TIFF stack: https://doi.org/10.17602/M2/M420055; OBJ file of all segmented three-dimensional objects https://doi.org/10.17602/M2/M420865; PLY file of all segemented three-dimensional objects: https://doi.org/10.17602/M2/M420629). The Mimics file can be downloaded by contacting the Department of Vertebrate Paleontology at the Museum of Comparative Zoology, Harvard University. All other data associated with this paper are included in the Supplementary Data. This work and associated nomenclatural acts are registered in ZooBank. ZooBank LSIDs are accessible at the URL generated by appending the LSID to http://zoobank.org.

Code availability

The code needed to perform the trait analyses is included in the Supplementary Data.

References

  1. Woodward, A. S. Catalogue of the Fossil Fishes in the British Museum (Natural History). Part II. Containing the Elasmobranchii (Acanthodii), Holocephali, Ichthyodorulites, Ostracodermi, Dipnoi, and Teleostomi (Crossopterygii and Chondrostean Actinopterygii) (British Museum, 1881).

  2. Woodward, A. S. Catalogue of the Fossil Fishes in the British Museum (Natural History). Part III. Containing the Actinopterygian Teleostomi of the Orders Chondrostei (Concluded), Protospondyli, Aethospondyli, and Isospondyli (In Part) (British Museum, 1895).

  3. Sallan, L. C. & Coates, M. I. End-Devonian extinction and a bottleneck in the early evolution of modern jawed vertebrates. Proc. Natl Acad. Sci. USA 107, 10131–10135 (2010).

    Article  CAS  Google Scholar 

  4. Smithson, T. R., Richards, K. R. & Clack, J. A. Lungfish diversity in Romer’s Gap: reaction to the end-Devonian extinction. Palaeontology 59, 29–44 (2016).

    Article  Google Scholar 

  5. Anderson, J. S., Smithson, T., Masksy, C. F., Meyer, T. & Clack, J. A diverse tetrapod fauna from the base of ‘Romer’s Gap’. PLoS ONE 10, e0125446 (2015).

    Article  Google Scholar 

  6. Smithson, T. R., Wood, S. P., Marshall, J. E. A. & Clack, J. A. Earliest Carboniferous tetrapod and arthropod faunas populate Romer’s Gap. Proc. Natl Acad. Sci. USA 109, 4532–4537 (2012).

    Article  CAS  Google Scholar 

  7. Long, J. A. & Trinajstic, K. The Late Devonian Gogo Formation Lägerstatte of Western Australia: exceptional early vertebrate preservation and diversity. Annu. Rev. Earth Planet. Sci. 38, 255–279 (2010).

    Article  CAS  Google Scholar 

  8. Trewin, N. H. Palaeoecology and sedimentology of the Achanarras fish bed of the Middle Old Red Sandstone, Scotland. Trans. R. Soc. Edinb. Earth Sci. 77, 21–46 (1986).

    Article  Google Scholar 

  9. Sallan, L. C. & Friedman, M. Heads or tails: staged diversification in vertebrate evolutionary radiations. Proc. Biol. Sci. 279, 2025–2032 (2012).

    Google Scholar 

  10. Friedman, M., Pierce, S. E., Coates, M. & Giles, S. Feeding structures in the ray-finned fish Eurynotus crenatus (Actinopterygii: Eurynotiformes): implications for trophic diversification among Carboniferous actinopterygians. Earth Environ. Sci. Trans. R. Soc. Edinb. 109, 33–47 (2018).

    Google Scholar 

  11. Sallan, L. C. & Coates, M. I. Styracopterid (Actinopterygii) ontogeny and the multiple origins of post-Hangenberg deep-bodied fishes. Zool. J. Linn. Soc. 169, 156–199 (2013).

    Article  Google Scholar 

  12. Sallan, L. C. Tetrapod-like axial regionalization in an early ray-finned fish. Proc. Biol. Sci. 279, 3264–3271 (2012).

    Google Scholar 

  13. Sallan, L. & Galimberti, A. K. Body-size reduction in vertebrates following the end-Devonian mass extinction. Science 350, 812–815 (2015).

    Article  CAS  Google Scholar 

  14. Gardiner, B. G. & Schaeffer, B. Interrelationships of lower actinopterygian fishes. Zool. J. Linn. Soc. 97, 135–187 (1989).

    Article  Google Scholar 

  15. Coates, M. I. Endocranial preservation of a Carboniferous actinopterygian from Lancashire, UK, and the interrelationships of primitive actinopterygians. Philos. Trans. R. Soc. Lond. B 354, 435–462 (1999).

    Article  Google Scholar 

  16. Giles, S., Xu, G.-H., Near, T. J. & Friedman, M. Early members of a ‘living fossil’ lineage imply later origin of modern ray-finned fishes. Nature 549, 265–268 (2017).

    Article  CAS  Google Scholar 

  17. Cloutier, R. & Arraita, G. in Recent Advances in the Origin and Early Radiation of Vertebrates (eds Arratia, G. et al.) 217–270 (Dr. Friedrich Pfeil Verlag, 2004).

  18. O’Leary, M. A. et al. The placental mammal ancestor and the post-K-Pg radiation of placentals. Science 339, 662–667 (2013).

    Article  Google Scholar 

  19. Wilson, C. D., Pardo, J. D. & Anderson, J. S. A primitive actinopterygian braincase from the Tournaisian of Nova Scotia. R. Soc. Open Sci. 5, 171727 (2018).

    Article  Google Scholar 

  20. Gardiner, B. G. The relationships of the palaeoniscid fishes, a review based on new species of Mimia and Moythomasia from the Upper Devonian of Western Australia. Bull. Br. Mus. Geol. 37, 173–428 (1984).

    Google Scholar 

  21. Coates, M. I. Actinoptergians from the Namurian of Bearsden, Scotland, with comments on early actinopterygian neurocrania. Zool. J. Linn. Soc. 122, 27–59 (1998).

    Article  Google Scholar 

  22. Poplin, C. Étude de Quelques Paléoniscidés Pennsylvaniens du Kansas (Éditions du CNRS, 1974).

  23. Dunkle, D. H. Preliminary Description of a Paleoniscoid Fish from the Upper Devonian of Ohio (Cleveland Museum of Natural History, 1964).

  24. Friedman, M. & Blom, H. A new actinopterygian from the Famennian of East Greenland and the interrelationships of Devonian ray-finned fishes. J. Paleontol. 80, 1186–1204 (2006).

    Article  Google Scholar 

  25. Daeschler, E. B. An early actinopterygian fish from the Catskill Formation (Late Devonian, Famennian) in Pennsylvania, U.S.A. Proc. Acad. Nat. Sci. Phila. 150, 181–192 (2000).

    Google Scholar 

  26. Prokofiev, A. M. First finding of an articulated actinopterygian skeleton from the Upper Devonian of Siberia and a reappraisal of the family Moythomasiidae Kazantseva, 1971 (Osteichthyes). Paleontol. Res. 6, 321–327 (2002).

    Google Scholar 

  27. Janvier, P., Lethiers, F., Monod, O. & Balkaş, Ö. Discovery of a vertebrate fauna at the Devonian-Carboniferous boundary in SE Turkey (Hakkari Province). J. Pet. Geol. 7, 147–168 (1984).

    Article  Google Scholar 

  28. Wilson, C. D., Mansky, C. F. & Anderson, J. S. A platysomid occurrence from the Tournaisian of Nova Scotia. Sci. Rep. 11, 8375 (2021).

    Article  CAS  Google Scholar 

  29. Eastman, C. R. Devonic Fishes of the New York Formations (New York State Education Department, 1907).

  30. Challands, T. J. et al. A lungfish survivor of the end-Devonian extinction and an early Carboniferous dipnoan radiation. J. Syst. Palaeontol. 17, 1825–1846 (2019).

    Article  Google Scholar 

  31. Clack, J. A., Challands, T. J., Smithson, T. R. & Smithson, K. Z. Newly recognized Famennian lungfishes from East Greenland reveal tooth plate diversity and blur the Devonian-Carboniferous boundary. Pap. Palaeontol. 5, 261–279 (2019).

    Article  Google Scholar 

  32. Anderson, J. S., Smithson, T., Mansky, C. F., Meyer, T. & Clack, J. A diverse tetrapod fauna at the base of ‘Romer’s Gap’. PLoS ONE 10, e102446 (2015).

    Google Scholar 

  33. Daeschler, E. B., Clack, J. A. & Shubin, N. H. Late Devonian tetrapod remains from Red Hill, Pennsylvania, USA: how much diversity? Acta Zool. 90, 306–317 (2009).

    Article  Google Scholar 

  34. Ahlberg, P. E. & Clack, J. A. The smallest known Devonian tetrapod shows unexpectedly derived features. R. Soc. Open Sci. 7, 192117 (2020).

    Article  Google Scholar 

  35. Pardo, J. D., Szostakiwskyj, M., Ahlberg, P. E. & Anderson, J. S. Hidden morphological diversity among early tetrapods. Nature 546, 642–645 (2017).

    Article  CAS  Google Scholar 

  36. Socolow, A. A. (ed) Geologic Map of Pennsylvania, 1:250,000(Commonwealth of Pennsylvania, Department of Environmental Resources, 1980).

  37. Startenaer, P. Jacoburbirostrum, a new middle Famennian rhynchonellid (brachiopod) genus from southwestern New York State. Bull. Geosci. 89, 607–616 (2014).

    Article  Google Scholar 

  38. Kirchgasser, W. T. in Recognition of Devonian Series and Stage Boundaries in Geological Areas. Vol. 225. Courier Forschungsinstitut Senckenberg (ed. Bultynck, P.) 271–284 (2000).

  39. House, M. R. & Kirchgasser, W. Late Devonian goniatites (Cephalopoda, Ammonoidea) from New York State. Bull. Am. Paleontol. 374, 1–294 (2008).

    Google Scholar 

  40. Clendening, J. A., Eames, L. E. & Wood, G. D. Retusotriletes phillipsii n. sp., a potential Upper Devonian guide palynomorph. Palynology 4, 15–21 (1980).

    Article  Google Scholar 

  41. Becker, R. T., Marshall, J. E. A. & Da Silva, A.-C. in Geologic Time Scale 2020 (eds Gradstein, F. M. et al.) 733–810 (Elsevier, 2020).

  42. Yeager, K. M. Fossil fishes (Arthrodira and Acanthodida) from the Upper Devonian Chadokoin Formation of Erie County, Pennsylvania. Ohio J. Sci. 96, 52–56 (1996).

    Google Scholar 

  43. Lowney, K. A. Certain Bear Gulch (Namurian A, Montana) Actinopterygii (Osteichthyes), and a Re-evaluation of the Evolution of the Paleozoic Actinopterygians. PhD thesis, New York Univ. (1980).

  44. Coates, M. I. New actinopterygian fish from the Namurian Manse Burn Formation of Bearsden, Scotland. Palaeontology 36, 123–146 (1993).

    Google Scholar 

  45. Schultze, H.-P. & Bardack, D. Diversity and size changes in palaeonisciform fishes (Actinopterygii, Pisces) from the Pennsylvanian Mazon Creek fauna, Illinois, U.S.A. J. Vertebr. Paleontol. 7, 1–23 (1987).

    Article  Google Scholar 

  46. Rayner, D. H. On the cranial structure of an early palæoniscid, Kentuckia, gen. nov. Trans. R. Soc. Edinb. 62, 53–83 (1952).

    Article  Google Scholar 

  47. Hamel, M. H. & Poplin, C. The braincase anatomy of Lawrenciella schaefferi, actinopterygian from the Upper Carboniferous of Kansas (USA). J. Vertebr. Paleontol. 28, 989–1006 (2008).

    Article  Google Scholar 

  48. Schaeffer, B. & Dalquest, W. W. A palaeonisciform braincase from the Permian of Texas, with comments on cranial fissures and the posterior myodome. Am. Mus. Novit. 2658, 1–15 (1978).

    Google Scholar 

  49. Nielsen, E. Studies on Triassic fishes from East Greenland. I. Glaucolepis and Boreosomus. Meddr. Grønland 138, 1–403.

  50. Jessen, H. Moythomasia nitida Gross und M. cf. striata Gross, Devonische Palaeonisciden aus dem oberen Plattenkalk der Bergisch-Gladbach-Paffrather Mulde (Rheinisches Schiefergebirge) [in German]. Palaeontogr. Abt. A 128, 87–114 (1968).

    Google Scholar 

  51. Choo, B. A new species of the Devonian actinopterygian Moythomasia from Bergisch Gladbach, Germany, and fresh observations on M. durgaringa from the Gogo Formation of Western Australia. J. Vertebr. Paleontol. 35, e952817 (2015).

    Article  Google Scholar 

  52. Taverne, L. P. Osorioichthys marginis, “paléonisciforme” du Famennien de Belgique, et la phylogénie des Actinoptérygiens dévoniens (Pisces). Bull. de l’Institut R. des Sci. Naturelles de Belgique 67, 57–78 (1997).

    Google Scholar 

  53. Moy-Thomas, J. A. Memoirs: notes on the development of the chondrocranium in Polypterus senegalus. J. Cell Sci. 76, 209–229 (1933).

    Article  Google Scholar 

  54. Daget, J., Bauchot, M. L., Bauchot, R. & Arnoult, J. Développement du chondrocrâne et des arcs aortiques chez Polypterus senegalus Cuvier. Acta Zool. 45, 201–244 (1964).

    Article  Google Scholar 

  55. Latimer, A. E. & Giles, S. A giant dapediid from the Late Triassic of Switzerland and insights into neopterygian phylogeny. R. Soc. Open Sci. 5, 180497 (2018).

    Article  Google Scholar 

  56. Gardiner, B. G., Schaeffer, B. & Masserie, J. A. A review of the lower actinopterygian phylogeny. Zool. J. Linn. Soc. 144, 511–525 (2005).

    Article  Google Scholar 

  57. Mickle, K. E. & Lund, R. Three new palaeoniscoid fishes from the Bear Gulch Limestone (Serpukhovian, Mississippian) of Montana (USA) and the relationships of lower actinopterygians. Geodiversitas 31, 623–668 (2009).

    Article  Google Scholar 

  58. Sallan, L. C. Major issues in the origin of ray-finned fish (Actinopterygii) biodiversity. Biol. Rev. Camb. Philos. Soc. 89, 950–971 (2014).

    Article  Google Scholar 

  59. Friedman, M. The early evolution of ray-finned fishes. Palaeontology 58, 213–228 (2015).

    Article  Google Scholar 

  60. Henderson, S., Dunne, E. M., Fasey, S. & Giles, S. The early diversification of ray-finned fishes (Actinopterygii): hypotheses, challenges, and future prospects. Biol. Rev. (2022).

  61. Bapst, D. W. & Hopkins, M. J. Comparing cal3 and other a posteriori time-scaling approaches in a case study with the pterocephaliid trilobites. Paleobiology 43, 49–67 (2017).

    Article  Google Scholar 

  62. Heath, T. A., Huelsenbeck, J. P. & Stadler, T. The fossilized birth–death process for coherent calibration of divergence–time estimates. Proc. Natl Acad. Sci. USA 111, E2957–E2966 (2014).

    Article  CAS  Google Scholar 

  63. Monarrez, P. M., Heim, N. A. & Payne, J. L. Mass extinctions alter extinction and origination dynamics with respect to body size. Proc. Biol. Sci. 288, 20211681 (2021).

    Google Scholar 

  64. Cantalapiedra, J. L., Prado, J. L., Hernández Fernández, M. & Alberdi, M. T. Decoupled ecomorphological evolution and diversification in Neogene-Quaternary horses. Science 355, 627–630 (2017).

    Article  CAS  Google Scholar 

  65. Simões, T., Vernygora, O., Caldwell, M. W. & Pierce, S. E. Megaevolutionary dynamics and the timing of evolutionary innovation in reptiles. Nat. Commun. 11, 3322 (2020).

    Article  Google Scholar 

  66. Upham, N. S., Esselstyn, J. A. & Jetz, W. Inferring the mammal tree: species-level sets of phylogenies for questions in ecology, evolution, and conservation. PLoS Biol. 17, e3000494 (2019).

    Article  CAS  Google Scholar 

  67. Alroy, J. The fossil record of North American mammals: evidence for a Paleocene evolutionary radiation. Syst. Biol. 48, 107–118 (1999).

    Article  CAS  Google Scholar 

  68. Goloboff, P. A., Farris, J. S. & Nixon, K. C. TNT, a free program for phylogenetic analysis. Cladistics 24, 774–786 (2008).

    Article  Google Scholar 

  69. Ronquist, F. et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542 (2012).

    Article  Google Scholar 

  70. Figueroa, R. T., Weinschütz, L. C. & Friedman, M. The oldest Devonian circumpolar ray-finned fish? Biol. Lett. 17, 20200766 (2021).

    Article  Google Scholar 

  71. Swofford, D. L. PAUP* [*Phylogenetic Analysis Using Parsimony (and Other Methods)] 4,0 b (Sinauer Associates, 2003).

  72. Matzke, N. J. & Wright, A. Inferring node dates from tip dates in fossil Canidae: the importance of tree priors. Biol. Lett. 12, 20160328 (2016).

    Article  Google Scholar 

  73. Revell, L. J. Two new graphical methods for mapping trait evolution on phylogenies. Methods Ecol. Evol. 4, 754–759 (2013).

    Article  Google Scholar 

  74. Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).

    Article  Google Scholar 

  75. Felsenstein, J. Phylogenies and the comparative method. Am. Nat. 125, 1–15 (1985).

    Article  Google Scholar 

  76. Gardiner, B. G. Certain palaeoniscoid fishes and the evolution of the snout in actinopterygians. Bull. Br. Mus. Geol. 8, 255–325 (1963).

    Google Scholar 

Download references

Acknowledgements

We thank the Museum of Comparative Zoology, Harvard University for specimen access and especially J. Cundiff for organizing the loan of material that formed the basis of this study. We also thank E. Bernard, D. Gelsthorpe, Z. Johanson, L. Loughtman, P. Shephard and S. Walsh for facilitating access to comparative collections; G. Lloyd for helpful discussions; and C. Byrd for assistance with data archiving. S.G. was supported by a Royal Society Dorothy Hodgkin Research Fellowship (no. DH160098). This research was also supported by funding from the National Science Foundation (NSF) to M.F. (NSF-GEO 2219007) and S.E.P. (NSF-GEO 2219069). This study includes data produced in the CTEES facility at University of Michigan, supported by the Department of Earth and Environmental Sciences and College of Literature, Science, and the Arts.

Author information

Authors and Affiliations

Authors

Contributions

M.F. and S.E.P. designed the research. S.G., M.F., K.F. and R.W. performed the research and analysed the data. S.G. and M.F. wrote the paper and designed figures. All authors edited the manuscript.

Corresponding author

Correspondence to Sam Giles.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Ecology & Evolution thanks Jason Pardo, Michael Gottfried and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Geological context of Palaeoneiros clackorum MCZ VPF-5114.

(A) Map of Pennsylvania showing location; inset shows geological map for the area of Warren County (based on (36)) and simplified geological column (based on (68)). City of Warren indicated by solid bounding lines. (B) External photograph of Palaeoneiros clackorum showing right lateral flank. Colors in stratigraphic column relate to geological map: latest Devonian and post-Devonian strata condensed into one color. Scale bar in (A): 10 km, in (B): 10 mm. Credit: Museum of Comparative Zoology, Harvard University; © President and Fellows of Harvard College.

Extended Data Fig. 2 External photographs of Palaeoneiros clackorum MCZ VPF-5114.

Right lateral flank in (A) part and (B) counterpart. (C) Ventral view showing entire specimen, and (D) closeup of skull and pectoral region. (E) Right anal fin. (F) Scales from right lateral flank. Scale bar in (A)-(C): 10 mm, in (D)-(F): 5 mm. Photos copyright President and Fellows of Harvard College. Abbreviations: an, anal fin; br, branchiostegal; chy, ceratohyal; clth, cleithrum; dent, dentary; dors, dorsal fin; frf, fringing fulcra; lep, lepidotrichia; mx, maxilla; pect, pectoral fin; pelv, pelvic fin; sc, scale. Credit: Museum of Comparative Zoology, Harvard University; © President and Fellows of Harvard College.

Extended Data Fig. 3 Anatomy of Palaeoneiros clackorum MCZ VPF-5114.

Interpretive drawing of (A) right lateral view of specimen; (B) medial view of right upper and lower jaws; (C) medial view of left shoulder girdle and fin, and (D) left lateral view of gill skeleton, hyoid arch and braincase. Scale bar in (A): 10 mm, in (B)-(D): 5 mm. Abbreviations: ang, angular; art, articular; asp, ascending process of parasphenoid; av, accessory vomer; br, branchiostegal; cb, ceratobranchial; chy, ceratohyal; clav, clavicle; clth, cleithrum; dent, dentary; dmpt, dermatopterygoid; dsph, dermosphenotic; ecpt, ectopterygoid and dermopalatines; eb, epibranchial; enpt, entopteryygoid; exo, exoccipital; hmd, hyomandibula;?ic, possible intercalar; icl, interclavicle; ioc, infraorbital canal; it, intertemporal; jug, jugal; jugc, jugal canal; lep, lepidotrichia; ll, lateral line; mc, mandibular canal; mx, maxilla; op, operculum; part, prearticular and coronoid; popc, preopercular canal; popl, preopercular pit lines;?pmx, possible premaxilla; psp, parasphenoid; qu, quadrate; rad, radials; sc, scale; scl, sclerotic ossicle; scpc, scapulocoracoid; sop, suboperculum; sorb, suborbitals; sph, sphenotic ossification; st, supratemporal; t, teeth; tp, toothplate; unc, uncinate process.

Extended Data Fig. 4 External anatomy of Palaeoneiros clackorum MCZ VPF-5114.

Renders of specimen in (A) right lateral, (B) left lateral, (C) dorsal, (D) anterior, and (E) ventral view; and an isolated scale (F). Colour coding of skeleton: blue, cheek and jaw; purple, skull roof and sclerotic ossicle; pink, braincase; dark green, hyomandibula; light green, operculogular system; turquoise, shoulder girdle; yellow, gill skeleton. Scale bar in (A)-(C),(E): 5 mm, in (D): 2 mm, in(F):1 mm. Abbreviations: ang, angular; antd, anterodorsal process; art, articular; asc, ascending process of the parasphenoid; av, accessory vomer; br, branchiostegal; cb, ceratobranchial; chy, ceratohyal; clav, clavicle; clth, cleithrum; dent, dentary; dsph, dermosphenotic; eb, epibranchial; ecpt, ectopterygoid and dermopalatines; enpt, entopterygoid; exsc, extrascapular; fr, frontal; fu, fused lepidotrichia; hb, hypobranchial; hmd, hyomandibula;?ic, possible intercalar; icl, interclavicle; ioc, infraorbital canal; it, intertemporal; jgl, jugal canal; jug, jugal; lac, lacrimal; lep, lepidotrichia; ll, lateral line; mc, mandibular canal; mpl, middle pit line; mx, maxilla; op, operculum; pa, parietal; part, prearticular and coronoids; peg, scale peg; pi, pineal foramen;?pmx, possible premaxilla; pop, preoperculum; popl, preopercular pit line; ppl, posterior pit line; pscl, presupracleithrum; psp, parasphenoid; pt, posttemporal; qu, quadrate; rad, radial; sc, scale; scl, sclerotic ossicle; sclth, supracleithrum; soc, supraorbital canal; sop, suboperculum; sorb, suborbital; sph, sphenotic ossification; st, supratemporal; unc, uncinate process. Renders copyright President and Fellows of Harvard College.

Extended Data Fig. 5 Renders of Palaeoneiros clackorum MCZ VPF-5114.

(A) Skull roofing bones in visceral view. (B) Possible premaxilla. (C) Right maxilla, dentary and postdentary in medial view. (D) Right lower jaw in dorsal view. (E) Left lower jaw in medial view. Scale bar in all: 2 mm. Abbreviations: add, adductor fossa; ang, angular; art, articular; dent, dentary; exsc, extrascapular; fr, frontal; ll, lateral line; mc, mandibular canal; mx, maxilla; na, nasal; ov, maxilla overlap of dentary;?pmx, premaxilla; part, prearticular plus coronoids; pi, pineal foramen; pt, posttemporal; qu, quadrate; ri, ridge; pa, parietal; sh, maxillary shelf; soc, supraorbital canal; t, tooth; tp, toothplate. Credit: Museum of Comparative Zoology, Harvard University; © President and Fellows of Harvard College.

Extended Data Fig. 6 Renders of gill skeleton of Palaeoneiros clackorum MCZ VPF-5114.

(A) Gill skeleton in dorsal view. (B) Gill skeleton in ventral view. Scale bar: 5 mm. Abbreviations: bb, basibranchial; cb, ceratobranchial; eb, epibranchial; hb, hyobranchial; pb, pharyngobranchial. Credit: Museum of Comparative Zoology, Harvard University; © President and Fellows of Harvard College.

Extended Data Fig. 7 Renders of shoulder and fin of Palaeoneiros clackorum MCZ VPF-5114.

(A) Shoulder girdle and pectoral fin in left lateral view, and (B) closeup with dermal girdle removed. (C) Shoulder girdle and pectoral fin in medial view, and (D) with radials and lepidotrichia removed. (E) Shoulder girdle and pectoral fin in posterior view, and (F) with radials and lepidotrichia removed. Radials in (G) dorsal and (H) ventral view. Scale bar in (A)-(F): 2 mm, in (G)-(H): 1 mm. Abbreviations: clav, clavicle; clth, cleithrum; fu, fused lepidotrichia; gl, glenoid fossa; icl, interclavicle; lep, lepidotrichia; mptg, metapterygium; pr.rad, preaxial radial; ptg, propterygium; ptg.ca, propterygial canal; rad, radial; scpc.hz, horizontal plate of scapulocoracoid; scpc.pl, scapulocoracoid plates. Credit: Museum of Comparative Zoology, Harvard University; © President and Fellows of Harvard College.

Extended Data Fig. 8 Results of parsimony analysis.

(A) Strict consensus of the 20,000 trees (1616 steps) for 121 taxa and 292 equally weighted characters. Digits above nodes indicate Bremer decay indices above 1. (B) Agreement subtree. New taxon indicated in bold.

Extended Data Fig. 9 Results of Bayesian analysis.

50% majority rule tree for 121 taxa and 292 equally weighted characters. Digits at nodes indicate posterior probability support. New taxon indicated in bold.

Extended Data Fig. 10 Results of fossil birth-death analysis.

Blue bars associated with nodes indicate 95% highest posterior density for age estimates. New taxon indicated in bold.

Supplementary information

Supplementary Information

Supplementary Text, Table and References.

Reporting Summary

Peer Review File

Supplementary Data 1

Zip file containing the files needed to perform the parsimony analysis in TNT (morphological data matrix, TNT script, constraint tree) and a consensus tree file.

Supplementary Data 2

Zip file containing the morphological data matrix formatted for the Bayesian analysis and a consensus tree file.

Supplementary Data 3

Zip file containing the code required to perform the trait analyses and the Excel file containing the data for the timescaling and lower-jaw analyses. Sheet 1 contains taxon list, data source, standard length, jaw length, age data, locality and stratigraphy. NA indicates that lower-jaw length or taxon was not included in our analysis. Red, inapplicable; orange, measured from literature; green, measured from the specimen. Sheet 2 contains the taxonomic notes. Sheet 3 contains the average jaw and standard lengths for taxa in which both can be measured.

Supplementary Data 4

Zip file containing the MrBayes script for the fossil birth–death analysis and consensus file.

Supplementary Data 5

Large-format PDF of a single most parsimonious tree showing all character optimizations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giles, S., Feilich, K., Warnock, R.C.M. et al. A Late Devonian actinopterygian suggests high lineage survivorship across the end-Devonian mass extinction. Nat Ecol Evol 7, 10–19 (2023). https://doi.org/10.1038/s41559-022-01919-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-022-01919-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing