Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Safeguarding nutrients from coral reefs under climate change

Abstract

The sustainability of coral reef fisheries is jeopardized by complex and interacting socio-ecological stressors that undermine their contribution to food and nutrition security. Climate change has emerged as one of the key stressors threatening coral reefs and their fish-associated services. How fish nutrient concentrations respond to warming oceans remains unclear but these responses are probably affected by both direct (metabolism and trophodynamics) and indirect (habitat and species range shifts) effects. Climate-driven coral habitat loss can cause changes in fish abundance and biomass, revealing potential winners and losers among major fisheries targets that can be predicted using ecological indicators and biological traits. A critical next step is to extend research focused on the quantity of available food (fish biomass) to also consider its nutritional quality, which is relevant to progress in the fields of food security and malnutrition. Biological traits are robust predictors of fish nutrient content and thus potentially indicate how climate-driven changes are expected to impact nutrient availability within future food webs on coral reefs. Here, we outline future research priorities and an anticipatory framework towards sustainable reef fisheries contributing to nutrition-sensitive food systems in a warming ocean.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Addressing inadequate micronutrient intake in countries with coral reefs requires policies that integrate the global fish trade dynamics with food and nutrition security policy.
Fig. 2: Impacts of climate change and other human stressors on access to reef-based food and nutrition.
Fig. 3: Safe operating spaces for coral reef fisheries and interactions between multiple indicators.

Similar content being viewed by others

References

  1. Burke, L., Reytar, K., Spalding, M. & Perry, A. Reefs at Risk Revisited (World Resource Institute, 2011).

  2. Bell, J. D. et al. Planning the use of fish for food security in the Pacific. Mar. Policy 33, 64–76 (2009).

    Article  Google Scholar 

  3. Gillett, R. Fisheries in the Economies of the Pacific Island Countries and Territories (Asian Development Bank, 2016).

  4. The Regional State of the Coast Report: Western Indian Ocean (UNEP, Nairobi Convention & WIOMSA, 2015).

  5. Wabnitz, C. C. C., Cisneros-Montemayor, A. M., Hanich, Q. & Ota, Y. Ecotourism, climate change and reef fish consumption in Palau: benefits, trade-offs and adaptation strategies. Mar. Policy 88, 323–332 (2018).

    Article  Google Scholar 

  6. Cinner, J. E. et al. Building adaptive capacity to climate change in tropical coastal communities. Nat. Clim. Change 8, 117–123 (2018).

    Article  Google Scholar 

  7. Thilsted, S. H. et al. Sustaining healthy diets: the role of capture fisheries and aquaculture for improving nutrition in the post-2015 era. Food Policy 61, 126–131 (2016).

    Article  Google Scholar 

  8. Beal, T., Massiot, E., Arsenault, J. E., Smith, M. R. & Hijmans, R. J. Global trends in dietary micronutrient supplies and estimated prevalence of inadequate intakes. PLoS ONE 12, e0175554 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Calder, P. C. Marine omega-3 fatty acids and inflammatory processes: effects, mechanisms and clinical relevance. Biochim. Biophys. Acta 1851, 469–484 (2015).

    Article  CAS  PubMed  Google Scholar 

  10. Haddad, L. et al. A new global research agenda for food. Nature 540, 30–32 (2016).

    Article  CAS  PubMed  Google Scholar 

  11. Golden, C. D. et al. Aquatic foods to nourish nations. Nature 598, 315–320 (2021).

    Article  CAS  PubMed  Google Scholar 

  12. MacNeil, M. et al. Recovery potential of the world’s coral reef fishes. Nature 520, 341–344 (2015).

    Article  CAS  PubMed  Google Scholar 

  13. Graham, N. A. J., Jennings, S., MacNeil, M. A., Mouillot, D. & Wilson, S. K. Predicting climate-driven regime shifts versus rebound potential in coral reefs. Nature 518, 94–97 (2015).

    Article  CAS  PubMed  Google Scholar 

  14. Crona, B. I., Van Holt, T., Petersson, M., Daw, T. M. & Buchary, E. Using social–ecological syndromes to understand impacts of international seafood trade on small-scale fisheries. Glob. Environ. Change 35, 162–175 (2015).

    Article  Google Scholar 

  15. Okemwa, G. M., Kaunda-Arara, B., Kimani, E. N. & Ogutu, B. Catch composition and sustainability of the marine aquarium fishery in Kenya. Fish. Res. 183, 19–31 (2016).

    Article  Google Scholar 

  16. Cinner, J. E., Folke, C., Daw, T. & Hicks, C. C. Responding to change: using scenarios to understand how socioeconomic factors may influence amplifying or dampening exploitation feedbacks among Tanzanian fishers. Glob. Environ. Change 21, 7–12 (2011).

    Article  Google Scholar 

  17. Hicks, C. C., Graham, N. A. J., Maire, E. & Robinson, J. P. W. Secure local aquatic food systems in the face of declining coral reefs. One Earth 4, 1214–1216 (2021).

    Article  Google Scholar 

  18. Albert, J. et al. Malnutrition in rural Solomon Islands: an analysis of the problem and its drivers. Matern. Child Nutr. 16, e12921 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Golden, C. D. et al. Social–ecological traps link food systems to nutritional outcomes. Glob. Food Security 30, 100561 (2021).

    Article  Google Scholar 

  20. Smale, D. A. et al. Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nat. Clim. Change 9, 306–312 (2019).

    Article  Google Scholar 

  21. Robinson, J. P. W., Wilson, S. K., Jennings, S. & Graham, N. A. J. Thermal stress induces persistently altered coral reef fish assemblages. Glob. Change Biol. 25, 2739–2750 (2019).

    Article  Google Scholar 

  22. Robinson, J. P. W. et al. Productive instability of coral reef fisheries after climate-driven regime shifts. Nat. Ecol. Evol. 3, 183–190 (2019).

    Article  PubMed  Google Scholar 

  23. Stuart-Smith, R. D., Brown, C. J., Ceccarelli, D. M. & Edgar, G. J. Ecosystem restructuring along the Great Barrier Reef following mass coral bleaching. Nature 560, 92–96 (2018).

    Article  CAS  PubMed  Google Scholar 

  24. Morais, R. et al. Severe coral loss shifts energetic dynamics on a coral reef. Funct. Ecol. 34, 1507–1518 (2020).

    Article  Google Scholar 

  25. Robinson, J. P. W. et al. Habitat and fishing control grazing potential on coral reefs. Funct. Ecol. 34, 240–251 (2020).

    Article  Google Scholar 

  26. Fontoura, L. et al. Climate-driven shift in coral morphological structure predicts decline of juvenile reef fishes. Glob. Change Biol. 26, 557–567 (2020).

    Article  Google Scholar 

  27. Rogers, A., Blanchard, J. L. & Mumby, P. J. Fisheries productivity under progressive coral reef degradation. J. Appl. Ecol. 55, 1041–1049 (2018).

    Article  Google Scholar 

  28. Bates, A. E. et al. Climate resilience in marine protected areas and the ‘protection paradox’. Biol. Conserv. 236, 305–314 (2019).

    Article  Google Scholar 

  29. Darling, E. S. et al. Social–environmental drivers inform strategic management of coral reefs in the Anthropocene. Nat. Ecol. Evol. 3, 1341–1350 (2019).

    Article  PubMed  Google Scholar 

  30. Soliño, L. & Costa, P. R. Global impact of ciguatoxins and ciguatera fish poisoning on fish, fisheries and consumers. Environ. Res. 182, 109111 (2020).

    Article  PubMed  Google Scholar 

  31. Rogers, A. et al. Anticipative management for coral reef ecosystem services in the 21st century. Glob. Change Biol. 21, 504–514 (2015).

    Article  Google Scholar 

  32. Thiault, L. et al. Escaping the perfect storm of simultaneous climate change impacts on agriculture and marine fisheries. Sci. Adv. 5, eaaw9976 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Souter, D. et al. Status of Coral Reefs of the World: 2020 (Global Coral Reef Monitoring Network & International Coral Reef Initiative, 2021).

  34. Hicks, C. C. et al. Harnessing global fisheries to tackle micronutrient deficiencies. Nature 574, 95–98 (2019).

    Article  CAS  PubMed  Google Scholar 

  35. Bierwagen, S. L., Heupel, M. R., Chin, A. & Simpfendorfer, C. A. Trophodynamics as a tool for understanding coral reef ecosystems. Front. Mar. Sci. 5, 24 (2018).

    Article  Google Scholar 

  36. Flombaum, P. et al. Present and future global distributions of the marine Cyanobacteria Prochlorococcus and Synechococcus. Proc. Natl Acad. Sci. USA 110, 9824–9829 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lehane, L. & Lewis, R. J. Ciguatera: recent advances but the risk remains. Int. J. Food Microbiol. 61, 91–125 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Fraser, K. M. et al. Production of mobile invertebrate communities on shallow reefs from temperate to tropical seas. Proc. R. Soc. B Biol. Sci. 287, 20201798 (2020).

    Article  CAS  Google Scholar 

  39. Ullah, H., Nagelkerken, I., Goldenberg, S. U. & Fordham, D. A. Climate change could drive marine food web collapse through altered trophic flows and cyanobacterial proliferation. PLoS Biol. 16, e2003446 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Kang, J. X. Omega-3: a link between global climate change and human health. Biotechnol. Adv. 29, 388–390 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hixson, S. M. & Arts, M. T. Climate warming is predicted to reduce omega-3, long-chain, polyunsaturated fatty acid production in phytoplankton. Glob. Change Biol. 22, 2744–2755 (2016).

    Article  Google Scholar 

  42. Tan, K., Zhang, H. & Zheng, H. Climate change and n-3 LC-PUFA availability. Prog. Lipid Res. 86, 101161 (2022).

    Article  CAS  PubMed  Google Scholar 

  43. Pethybridge, H. R. et al. Spatial patterns and temperature predictions of tuna fatty acids: tracing essential nutrients and changes in primary producers. PLoS ONE 10, e0131598 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Hempson, T. N., Graham, N. A. J., MacNeil, M. A., Bodin, N. & Wilson, S. K. Regime shifts shorten food chains for mesopredators with potential sublethal effects. Funct. Ecol. 32, 820–830 (2018).

    Article  Google Scholar 

  45. Bellwood, D. R., Hughes, T. & Hoey, A. S. Sleeping functional group drives coral-reef recovery. Curr. Biol. 16, 2434–2439 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Sunday, J. M. et al. Species traits and climate velocity explain geographic range shifts in an ocean-warming hotspot. Ecol. Lett. 18, 944–953 (2015).

    Article  PubMed  Google Scholar 

  47. Burrows, M. T. et al. Ocean community warming responses explained by thermal affinities and temperature gradients. Nat. Clim. Change 9, 959–963 (2019).

    Article  Google Scholar 

  48. Cheung, W. W., Watson, R. & Pauly, D. Signature of ocean warming in global fisheries catch. Nature 497, 365–368 (2013).

    Article  CAS  PubMed  Google Scholar 

  49. Stuart-Smith, R. D., Mellin, C., Bates, A. E. & Edgar, G. Habitat loss and range shifts contribute to ecological generalization amongst reef fishes. Nat. Ecol. Evol. 5, 656–662 (2021).

    Article  PubMed  Google Scholar 

  50. Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).

    Article  Google Scholar 

  51. Du Pontavice, H., Gascuel, D., Reygondeau, G., Maureaud, A. & Cheung, W. W. L. Climate change undermines the global functioning of marine food webs. Glob. Change Biol. 26, 1306–1318 (2020).

    Article  Google Scholar 

  52. Jones, J. et al. The microbiome of the gastrointestinal tract of a range-shifting marine herbivorous fish. Front. Microbiol. 9, 2000 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Littman, R., Willis, B. L. & Bourne, D. G. Metagenomic analysis of the coral holobiont during a natural bleaching event on the Great Barrier Reef. Environ. Microbiol. Rep. 3, 651–660 (2011).

    Article  CAS  PubMed  Google Scholar 

  54. Robinson, J. P. W. et al. Climate-induced increases in micronutrient availability for coral reef fisheries. One Earth 5, 98–108 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Froese, R. & Pauly, D. FishBase (FishBase, 2021); www.fishbase.org

  56. MacNeil, M. A. NutrientFishbase dataset. GitHub https://github.com/mamacneil/NutrientFishbase (2021).

  57. Waldock, C., Stuart-Smith, R. D., Edgar, G. J., Bird, T. J. & Bates, A. E. The shape of abundance distributions across temperature gradients in reef fishes. Ecol. Lett. 22, 685–696 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Breitburg, D. et al. Declining oxygen in the global ocean and coastal waters. Science 359, eaam7240 (2018).

    Article  PubMed  Google Scholar 

  59. Chaudhary, C., Richardson, A. J., Schoeman, D. S. & Costello, M. J. Global warming is causing a more pronounced dip in marine species richness around the equator. Proc. Natl Acad. Sci. USA 118, e2015094118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Cheung, W. W. L., Reygondeau, G. & Frölicher, T. L. Large benefits to marine fisheries of meeting the 1.5°C global warming target. Science 354, 1591–1594 (2016).

    Article  CAS  PubMed  Google Scholar 

  61. Golden, C. et al. Nutrition: fall in fish catch threatens human health. Nature 534, 317–320 (2016).

    Article  PubMed  Google Scholar 

  62. Nash, K. L. & Graham, N. A. J. Ecological indicators for coral reef fisheries management. Fish Fish. 17, 1029–1054 (2016).

    Article  Google Scholar 

  63. Pereira, H. M. et al. Essential biodiversity variables. Science 339, 277–278 (2013).

    Article  CAS  PubMed  Google Scholar 

  64. Brandl, S. J. et al. Coral reef ecosystem functioning: eight core processes and the role of biodiversity. Front. Ecol. Environ. 17, 445–454 (2019).

    Article  Google Scholar 

  65. Maire, E. et al. Micronutrient supply from global marine fisheries under climate change and overfishing. Curr. Biol. 31, 4132–4138 (2021).

    Article  CAS  PubMed  Google Scholar 

  66. Miloslavich, P. et al. Essential ocean variables for global sustained observations of biodiversity and ecosystem changes. Glob. Change Biol. 24, 2416–2433 (2018).

    Article  Google Scholar 

  67. Graham, N. A. J. & Nash, K. L. The importance of structural complexity in coral reef ecosystems. Coral Reefs 32, 315–326 (2013).

    Article  Google Scholar 

  68. Nash, K. L., Graham, N. A. J., Wilson, S. K. & Bellwood, D. R. Cross-scale habitat structure drives fish body size distributions on coral reefs. Ecosystems 16, 478–490 (2013).

    Article  Google Scholar 

  69. Pratchett, M. S. et al. in Oceanography and Marine Biology: An Annual Review Vol. 46 (eds Gibson, R. N. et al.) 251–296 (CRC Press, 2008).

  70. Graham, N. A. J. et al. Dynamic fragility of oceanic coral reef ecosystems. Proc. Natl Acad. Sci. USA 103, 8425–8429 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Richardson, L. E., Graham, N. A. J., Pratchett, M. S., Eurich, J. G. & Hoey, A. S. Mass coral bleaching causes biotic homogenization of reef fish assemblages. Glob. Change Biol. 24, 3117–3129 (2018).

    Article  Google Scholar 

  72. Graham, N. A. et al. Lag effects in the impacts of mass coral bleaching on coral reef fish, fisheries, and ecosystems. Conserv. Biol. 21, 1291–1300 (2007).

    Article  PubMed  Google Scholar 

  73. Hempson, T., Graham, N., Macneil, A., Hoey, A. & Wilson, S. Ecosystem regime shifts disrupt trophic structure. Ecol. Appl. 28, 191–200 (2018).

    Article  PubMed  Google Scholar 

  74. Jouffray, J.-B. et al. Identifying multiple coral reef regimes and their drivers across the Hawaiian archipelago. Phil. Trans. R. Soc. B Biol. Sci. 370, 20130268 (2015).

    Article  Google Scholar 

  75. McLean, M. et al. Trait structure and redundancy determine sensitivity to disturbance in marine fish communities. Glob. Change Biol. 25, 3424–3437 (2019).

    Article  Google Scholar 

  76. Nash, K. L., Graham, N. A. J., Jennings, S., Wilson, S. K. & Bellwood, D. R. Herbivore cross-scale redundancy supports response diversity and promotes coral reef resilience. J. Appl. Ecol. 53, 646–655 (2016).

    Article  Google Scholar 

  77. Vaitla, B. et al. Predicting nutrient content of ray-finned fishes using phylogenetic information. Nat. Commun. 9, 3742 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Kissling, W. D. et al. Towards global data products of essential biodiversity variables on species traits. Nat. Ecol. Evol. 2, 1531–1540 (2018).

    Article  PubMed  Google Scholar 

  79. Edgar, G. J. et al. Reef Life Survey: establishing the ecological basis for conservation of shallow marine life. Biol. Conserv. 252, 108855 (2020).

    Article  Google Scholar 

  80. Pauly, D. & Zeller, D. Accurate catches and the sustainability of coral reef fisheries. Curr. Opin. Environ. Sustain. 7, 44–51 (2014).

    Article  Google Scholar 

  81. Worm, B. & Branch, T. A. The future of fish. Trends Ecol. Evol. 27, 594–599 (2012).

    Article  PubMed  Google Scholar 

  82. McClanahan, T. R. et al. Critical thresholds and tangible targets for ecosystem-based management of coral reef fisheries. Proc. Natl Acad. Sci. USA 108, 17230–17233 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Cinner, J. E. et al. Meeting fisheries, ecosystem function, and biodiversity goals in a human-dominated world. Science 368, 307–311 (2020).

    Article  CAS  PubMed  Google Scholar 

  84. Robinson, J. P. W. et al. Managing fisheries for maximum nutrient yield. Fish Fish. 23, 800–811 (2022).

    Article  Google Scholar 

  85. Graham, N. A. et al. Extinction vulnerability of coral reef fishes. Ecol. Lett. 14, 341–348 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Schartup, A. T. et al. Climate change and overfishing increase neurotoxicant in marine predators. Nature 572, 648–650 (2019).

    Article  CAS  PubMed  Google Scholar 

  87. Free, C. M. et al. Impacts of historical warming on marine fisheries production. Science 363, 979–983 (2019).

    Article  CAS  PubMed  Google Scholar 

  88. Pinsky Malin, L. et al. Preparing ocean governance for species on the move. Science 360, 1189–1191 (2018).

    Article  CAS  PubMed  Google Scholar 

  89. Thorson, J. T. Predicting recruitment density dependence and intrinsic growth rate for all fishes worldwide using a data-integrated life-history model. Fish Fish. 21, 237–251 (2020).

    Article  Google Scholar 

  90. Ahern, M. B. et al. Locally-procured fish is essential in school feeding programmes in sub-Saharan Africa. Foods 10, 2080 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. UNEP-WCMC, WorldFish Centre, WRI & TNC. Global Distribution of Coral Reefs. Version 4.1. Ocean Data Viewer https://doi.org/10.34892/t2wk-5t34 (UN Environment World Conservation Monitoring Centre, 2021).

  92. Morillo-Velarde, P. S. et al. Habitat degradation alters trophic pathways but not food chain length on shallow Caribbean coral reefs. Sci. Rep. 8, 4109 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Kumar, M. et al. Minerals, PUFAs and antioxidant properties of some tropical seaweeds from Saurashtra coast of India. J. Appl. Phycol. 23, 797–810 (2011).

    Article  CAS  Google Scholar 

  94. Coleman, M. A. et al. Climate change does not affect the seafood quality of a commonly targeted fish. Glob. Change Biol. 25, 699–707 (2019).

    Article  Google Scholar 

  95. Sissener, N. H. Are we what we eat? Changes to the feed fatty acid composition of farmed salmon and its effects through the food chain. J. Exp. Biol. 221, jeb161521 (2018).

    Article  PubMed  Google Scholar 

  96. Hadj-Hammou, J., Mouillot, D. & Graham, N. A. J. Response and effect traits of coral reef fish. Front. Mar. Sci. 8, 640619 (2021).

    Article  Google Scholar 

  97. Mouillot, D., Graham, N. A. J., Villéger, S., Mason, N. W. H. & Bellwood, D. R. A functional approach reveals community responses to disturbances. Trends Ecol. Evol. 28, 167–177 (2013).

    Article  PubMed  Google Scholar 

  98. McMahon, K. W., Thorrold, S. R., Houghton, L. A. & Berumen, M. L. Tracing carbon flow through coral reef food webs using a compound-specific stable isotope approach. Oecologia 180, 809–821 (2016).

    Article  PubMed  Google Scholar 

  99. McMahon, K., Hamady, L. L. & Thorrold, S. Ocean ecogeochemistry—a review. Oceanogr. Mar. Biol. 51, 327–374 (2013).

    Google Scholar 

  100. Chikaraishi, Y. et al. Determination of aquatic food-web structure based on compound-specific nitrogen isotopic composition of amino acids. Limnol. Oceanogr. Methods 7, 740–750 (2009).

    Article  CAS  Google Scholar 

  101. Bowes, R. E. & Thorp, J. H. Consequences of employing amino acid vs. bulk-tissue, stable isotope analysis: a laboratory trophic position experiment. Ecosphere 6, 14 (2015).

    Article  Google Scholar 

  102. Blanchard, J. L., Heneghan, R. F., Everett, J. D., Trebilco, R. & Richardson, A. J. From bacteria to whales: using functional size spectra to model marine ecosystems. Trends Ecol. Evol. 32, 174–186 (2017).

    Article  PubMed  Google Scholar 

  103. Kleiber, D., Harris, L. M. & Vincent, A. C. J. Gender and small-scale fisheries: a case for counting women and beyond. Fish Fish. 16, 547–562 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

C.M. (FT200100870), K.L.N. (DE210100606) and R.D.S.-S. (FT190100599) were supported by Australian Research Council funding. M.A.M. was supported by the Natural Sciences and Engineering Research Council Canada Research Chairs Program. J.P.W.R. received funding from a Leverhulme Trust Early Career Fellowship. N.A.J.G. received funding from the Royal Society (URF\R\201029) and from the European Union’s Horizon 2020 research and innovation programme under grant agreement number 820989 (project COMFORT). C.C.H. receives funding from a European Research Council Starting Grant (759457) and a Philip Leverhulme Prize. C.D.G. and J.Z.-M. receive funding from the National Science Foundation CNH-L 1826668 and the John and Katie Hansen Family Foundation. D.M. is supported by the 2017–2018 Belmont Forum and BiodivERsA REEF-FUTURES project under the BiodivScen ERA-NET COFUND programme and with the funding organization ANR. The work reflects only our view; the European Commission and their executive agency are not responsible for any use that may be made of the information the work contains.

Author information

Authors and Affiliations

Authors

Contributions

C.M. conceptualized the structure and content of the manuscript after discussion with C.C.H. and N.A.J.G. C.M. wrote the initial draft. D.A.F., C.D.G., M.K., M.A.M., E.M., S.M., D.M., K.L.N., J.O.O., J.P.W.R., R.D.S.-S., J.Z.-M. and G.J.E. expanded on the ideas and engaged in discussion and editing of the final manuscript. All authors contributed to writing, editing, and approving the final manuscript.

Corresponding author

Correspondence to Camille Mellin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Ecology & Evolution thanks Abigail Bennett, Philippa Cohen, Naoki Kumagai and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mellin, C., Hicks, C.C., Fordham, D.A. et al. Safeguarding nutrients from coral reefs under climate change. Nat Ecol Evol 6, 1808–1817 (2022). https://doi.org/10.1038/s41559-022-01878-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-022-01878-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing