Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Meta-analysis shows that plant mixtures increase soil phosphorus availability and plant productivity in diverse ecosystems

Abstract

Soil phosphorus (P) availability is critical to plant productivity in many terrestrial ecosystems. How soil P availability responds to changes in plant diversity remains uncertain, despite the global crisis of rapid biodiversity loss. Our meta-analysis based on 180 studies across various ecosystems (croplands, grasslands, forests and pot experiments) shows that, on average, soil total P, phosphatase activity and available P are 6.8%, 8.5% and 4.6%, respectively, higher in species mixtures than in monocultures. The mixture effect on phosphatase activity becomes more positive with increasing species and functional group richness, with more pronounced increases in the rhizosphere than in the bulk soil. The mixture effects on soil-available P in the bulk soil do not change, but with increasing species or functional group richness these effects in the rhizosphere soil shift from positive to negative. Nonetheless, enhanced soil phosphatase activity stimulated available P in diverse species mixtures, offsetting increased plant uptake effects that decrease soil-available P. Moreover, the enhancement effects of species richness on soil phosphatase activity are positively associated with increased plant productivity. Our findings highlight that preserving plant diversity could increase soil phosphatase activity and P availability, which sustain the current and future productivity of terrestrial ecosystems.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: A conceptual diagram illustrating how plant diversity influences soil P cycling in terrestrial ecosystems.
Fig. 2: Comparison of soil total P, phosphatase activity and available P in species mixtures versus monocultures among bulk and rhizosphere soils.
Fig. 3: Comparison of soil total P, phosphatase activity and available P in species mixtures versus monocultures in relation to SR and FR.
Fig. 4: The interactive effects of the plant SR (or FR) in mixtures and SC on soil phosphatase activity and available P.
Fig. 5: The influence of soil phosphatase activity on plant productivity and soil-available P.

Data availability

The source data underlying Figs 15, Extended Data Fig. 1, Supplementary Figs. 18 and Supplementary Tables 19 are archived in figshare (https://doi.org/10.6084/m9.figshare.17476622).

Code availability

The code used in this study is available at figshare (https://doi.org/10.6084/m9.figshare.17476622).

References

  1. Vitousek, P. M., Porder, S., Houlton, B. Z. & Chadwick, O. A. Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen–phosphorus interactions. Ecol. Appl. 20, 5–15 (2010).

    PubMed  Article  Google Scholar 

  2. Hou, E. Q. et al. Global meta-analysis shows pervasive phosphorus limitation of aboveground plant production in natural terrestrial ecosystems. Nat. Commun. 11, 637 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  3. Cordell, D., Drangert, J.-O. & White, S. The story of phosphorus: global food security and food for thought. Glob. Environ. Change 19, 292–305 (2009).

    Article  Google Scholar 

  4. Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015).

    CAS  PubMed  Article  Google Scholar 

  5. Chen, X. L., Chen, H. Y. H., Searle, E. B., Chen, C. & Reich, P. B. Negative to positive shifts in diversity effects on soil nitrogen over time. Nat. Sustain. 4, 225–234 (2021).

    Article  Google Scholar 

  6. Oelmann, Y. et al. Plant diversity effects on aboveground and belowground N pools in temperate grassland ecosystems: development in the first 5 years after establishment. Glob. Biogeochem. Cy. 25, GB2014 (2011).

    Article  CAS  Google Scholar 

  7. Fornara, D. A. et al. Plant effects on soil N mineralization are mediated by the composition of multiple soil organic fractions. Ecol. Res. 26, 201–208 (2011).

    CAS  Article  Google Scholar 

  8. Wright, A. J., Wardle, D. A., Callaway, R. & Gaxiola, A. The overlooked role of facilitation in biodiversity experiments. Trends Ecol. Evol. 32, 383–390 (2017).

    PubMed  Article  Google Scholar 

  9. Oelmann, Y. et al. Above- and belowground biodiversity jointly tighten the P cycle in agricultural grasslands. Nat. Commun. 12, 4431 (2021).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  10. Li, L. et al. Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus-deficient soils. Proc. Natl Acad. Sci. USA 104, 11192–11196 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  11. Li, L., Tilman, D., Lambers, H. & Zhang, F. S. Plant diversity and overyielding: insights from belowground facilitation of intercropping in agriculture. New Phytol. 203, 63–69 (2014).

    PubMed  Article  CAS  Google Scholar 

  12. Hacker, N. et al. Plant diversity shapes microbe–rhizosphere effects on P mobilisation from organic matter in soil. Ecol. Lett. 18, 1356–1365 (2015).

    PubMed  Article  Google Scholar 

  13. Vance, C. P., Uhde-Stone, C. & Allan, D. L. Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytol. 157, 423–447 (2003).

    CAS  PubMed  Article  Google Scholar 

  14. Chen, J. et al. Long-term nitrogen loading alleviates phosphorus limitation in terrestrial ecosystems. Glob. Change Biol. 26, 5077–5086 (2020).

    Article  Google Scholar 

  15. Hinsinger, P. et al. P for two, sharing a scarce resource: soil phosphorus acquisition in the rhizosphere of intercropped species. Plant Physiol. 156, 1078–1086 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  16. Liu, X. J. et al. Plant diversity and species turnover co-regulate soil nitrogen and phosphorus availability in Dinghushan forests, southern China. Plant Soil 464, 257–272 (2021).

    CAS  Article  Google Scholar 

  17. Hooper, D. U. & Vitousek, P. M. Effects of plant composition and diversity on nutrient cycling. Ecol. Monogr. 68, 121–149 (1998).

    Article  Google Scholar 

  18. Alberti, G. et al. Tree functional diversity influences belowground ecosystem functioning. Appl. Soil Ecol. 120, 160–168 (2017).

    Article  Google Scholar 

  19. Maddhesiya, P. K., Singh, K. & Singh, R. P. Effects of perennial aromatic grass species richness and microbial consortium on soil properties of marginal lands and on biomass production. Land Degrad. Dev. 32, 1008–1021 (2021).

    Article  Google Scholar 

  20. Zhang, C. B. et al. Effects of plant diversity on nutrient retention and enzyme activities in a full-scale constructed wetland. Bioresour. Technol. 101, 1686–1692 (2010).

    CAS  PubMed  Article  Google Scholar 

  21. Štursová, M. & Baldrian, P. Effects of soil properties and management on the activity of soil organic matter transforming enzymes and the quantification of soil-bound and free activity. Plant Soil 338, 99–110 (2011).

    Article  CAS  Google Scholar 

  22. Wu, H. et al. Linkage between tree species richness and soil microbial diversity improves phosphorus bioavailability. Funct. Ecol. 33, 1549–1560 (2019).

    Article  Google Scholar 

  23. Steinauer, K. et al. Plant diversity effects on soil microbial functions and enzymes are stronger than warming in a grassland experiment. Ecology 96, 99–112 (2015).

    PubMed  Article  Google Scholar 

  24. Zhang, D. S. et al. Increased soil phosphorus availability induced by faba bean root exudation stimulates root growth and phosphorus uptake in neighbouring maize. New Phytol. 209, 823–831 (2016).

    CAS  PubMed  Article  Google Scholar 

  25. Berendse, F., van Ruijven, J., Jongejans, E. & Keesstra, S. Loss of plant species diversity reduces soil erosion resistance. Ecosystems 18, 881–888 (2015).

    CAS  Article  Google Scholar 

  26. Forrester, D. I. & Bauhus, J. A review of processes behind diversity–productivity relationships in forests. Curr. Rep. 2, 45–61 (2016).

    Article  CAS  Google Scholar 

  27. Batterman, S. A. et al. Phosphatase activity and nitrogen fixation reflect species differences, not nutrient trading or nutrient balance, across tropical rainforest trees. Ecol. Lett. 21, 1486–1495 (2018).

    PubMed  Article  Google Scholar 

  28. Chen, C., Chen, H. Y. H., Chen, X. & Huang, Z. Meta-analysis shows positive effects of plant diversity on microbial biomass and respiration. Nat. Commun. 10, 1332 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  29. Hisano, M., Chen, H. Y. H., Searle, E. B. & Reich, P. B. Species-rich boreal forests grew more and suffered less mortality than species-poor forests under the environmental change of the past half-century. Ecol. Lett. 22, 999–1008 (2019).

    PubMed  Article  Google Scholar 

  30. Chen, X. & Chen, H. Y. H. Plant diversity loss reduces soil respiration across terrestrial ecosystems. Glob. Change Biol. 25, 1482–1492 (2019).

    Article  Google Scholar 

  31. Chen, X. & Chen, H. Y. H. Plant mixture balances terrestrial ecosystem C:N:P stoichiometry. Nat. Commun. 12, 4562 (2021).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. Reich, P. B. et al. Species and functional group diversity independently influence biomass accumulation and its response to CO2 and N. Proc. Natl Acad. Sci. USA 101, 10101–10106 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  33. Chen, X. et al. Effects of plant diversity on soil carbon in diverse ecosystems: a global meta-analysis. Biol. Rev. 95, 167–183 (2020).

    Article  Google Scholar 

  34. Zhang, Y., Chen, H. Y. H. & Reich, P. B. Forest productivity increases with evenness, species richness and trait variation: a global meta-analysis. J. Ecol. 100, 742–749 (2012).

    Article  Google Scholar 

  35. Alewell, C. et al. Global phosphorus shortage will be aggravated by soil erosion. Nat. Commun. 11, 4546 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  36. Mueller, K. E., Tilman, D., Fornara, D. A. & Hobbie, S. E. Root depth distribution and the diversity–productivity relationship in a long-term grassland experiment. Ecology 94, 787–793 (2013).

    Article  Google Scholar 

  37. Tang, X. Y. et al. Intercropping legumes and cereals increases phosphorus use efficiency; a meta-analysis. Plant Soil 460, 89–104 (2021).

    CAS  Article  Google Scholar 

  38. Karanika, E. D., Alifragis, D. A., Mamolos, A. P. & Veresoglou, D. S. Differentiation between responses of primary productivity and phosphorus exploitation to species richness. Plant Soil 297, 69–81 (2007).

    CAS  Article  Google Scholar 

  39. Bünemann, E. K., Prusisz, B. & Ehlers, K. in Phosphorus in Action: Biological Processes in Soil Phosphorus Cycling (eds Bünemann, E. et al.) 37–57 (Springer, 2011).

  40. Ma, Z. L. & Chen, H. Y. H. Effects of species diversity on fine root productivity in diverse ecosystems: a global meta-analysis. Glob. Ecol. Biogeogr. 25, 1387–1396 (2016).

    Article  Google Scholar 

  41. Mellado-Vazquez, P. G. et al. Plant diversity generates enhanced soil microbial access to recently photosynthesized carbon in the rhizosphere. Soil Biol. Biochem. 94, 122–132 (2016).

    CAS  Article  Google Scholar 

  42. Qin, Y. et al. Arbuscular mycorrhizal fungus differentially regulates P mobilizing bacterial community and abundance in rhizosphere and hyphosphere. Appl. Soil Ecol. 170, 104294 (2022).

    Article  Google Scholar 

  43. Rojo, M. J., Carcedo, S. G. & Mateos, M. P. Distribution and characterization of phosphatase and organic phosphorus in soil fractions. Soil Biol. Biochem. 22, 169–174 (1990).

    CAS  Article  Google Scholar 

  44. Barrow, N. The effects of pH on phosphate uptake from the soil. Plant Soil 410, 401–410 (2017).

    CAS  Article  Google Scholar 

  45. Button, K. S. et al. Power failure: why small sample size undermines the reliability of neuroscience. Nat. Rev. Neurosci. 14, 365–376 (2013).

    CAS  PubMed  Article  Google Scholar 

  46. Yu, R. P., Li, X. X., Xiao, Z. H., Lambers, H. & Li, L. Phosphorus facilitation and covariation of root traits in steppe species. New Phytol. 226, 1285–1298 (2020).

    CAS  PubMed  Article  Google Scholar 

  47. Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G. & PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Medicine 6, e1000097 (2009).

  48. Jenkins, D. G. & Quintana-Ascencio, P. F. A solution to minimum sample size for regressions. PLoS ONE 15, e0229345 (2020)..

  49. Rohatgi, A. WebPlotDigitizer v.4.5 (Automeris, 2021); https://automeris.io/WebPlotDigitizer

  50. Jobbagy, E. G. & Jackson, R. B. The distribution of soil nutrients with depth:global patterns and the imprint of plants. Biogeochemistry 53, 51–77 (2001).

    CAS  Article  Google Scholar 

  51. Trabucco, A. & Zomer, R. Global Aridity Index (Global-Aridity) and Global Potential Evapo-Transpiration (Global-PET) Geospatial Database (CGIAR, 2009); http://www.cgiar-csi.org/data/global-aridity-and-pet-database

  52. Bridgham, S. D., Pastor, J., Mcclaugherty, C. A. & Richardson, C. J. Nutrient-use efficiency: a litterfall index, a model, and a test along a nutrient-availability gradient in North Carolina peatlands. Am. Nat. 145, 1–21 (1995).

    Article  Google Scholar 

  53. Hedges, L. V., Gurevitch, J. & Curtis, P. S. The meta-analysis of response ratios in experimental ecology. Ecology 80, 1150–1156 (1999).

    Article  Google Scholar 

  54. Loreau, M. & Hector, A. Partitioning selection and complementarity in biodiversity experiments. Nature 412, 72–76 (2001).

    CAS  PubMed  Article  Google Scholar 

  55. Pittelkow, C. M. et al. Productivity limits and potentials of the principles of conservation agriculture. Nature 517, 365–368 (2015).

    CAS  PubMed  Article  Google Scholar 

  56. Bates, D. et al. lme4: Linear mixed-effects models using Eigen and S4. R package version 1.1-10 https://cran.r-project.org/web/packages/lme4/index.html (2017).

  57. Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1, 3–14 (2010).

    Article  Google Scholar 

  58. Johnson, J. B. & Omland, K. S. Model selection in ecology and evolution. Trends Ecol. Evol. 19, 101–108 (2004).

    PubMed  Article  Google Scholar 

  59. MuMIn: Multi-model inference. R package version 1.42.1 (2018).

  60. Zuur, A. F., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R (Springer, 2009).

  61. Koricheva, J., Gurevitch, J. & Mengersen, K. Handbook of Meta-analysis in Ecology and Evolution (Princeton Univ. Press, 2013).

  62. Graham, M. H. Confronting multicollinearity in ecological multiple regression. Ecology 84, 2809–2815 (2003).

    Article  Google Scholar 

  63. Lefcheck, J. S. piecewiseSEM: piecewise structural equation modelling in R for ecology, evolution, and systematics. Methods Ecol. Evol. 7, 573–579 (2016).

    Article  Google Scholar 

  64. Long, J. A. Interactions: comprehensive, user-friendly toolkit for probing interactions. R package version 1.1.5 https://cran.r-project.org/package=interactions (2021).

  65. Adams, D. C., Gurevitch, J. & Rosenberg, M. S. Resampling tests for meta-analysis of ecological data. Ecology 78, 1277–1283 (1997).

    Article  Google Scholar 

  66. R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021).

Download references

Acknowledgements

We thank the Discovery Grants program (grant no. RGPIN-2018-05700 to S.C.) of the Natural Sciences and Engineering Research Council of Canada (NSERC) for supporting this research. X.C. wishes to thank NSERC and the Government of Canada for a Banting Postdoctoral Fellowship. H.Y.H.C. was also supported by NSERC grants (nos. RGPIN-2019-5109 and STPGP506284).

Author information

Authors and Affiliations

Authors

Contributions

X.C., H.Y.H.C. and S.C. designed the study. X.C. collected data. X.C. performed the meta-analysis and wrote the first draft of the manuscript and all authors wrote interactively through multiple rounds of revisions.

Corresponding author

Correspondence to Scott X. Chang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Ecology & Evolution thanks Chunjie Li and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1

Geographical distribution of experiments testing plant mixture effects on soil total P, phosphatase activity and available P collected for this meta-analysis.

Supplementary information

Supplementary Information

Supplementary Figs. 1–8 and Tables 1–9.

Reporting Summary

Peer Review File

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Chen, H.Y.H. & Chang, S.X. Meta-analysis shows that plant mixtures increase soil phosphorus availability and plant productivity in diverse ecosystems. Nat Ecol Evol 6, 1112–1121 (2022). https://doi.org/10.1038/s41559-022-01794-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-022-01794-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing