Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Functional diversity effects on productivity increase with age in a forest biodiversity experiment

Abstract

Forest restoration increases global forest area and ecosystem services such as primary productivity and carbon storage. How tree species functional composition impacts the provisioning of these services as forests develop is sparsely studied. We used 10-year data from 478 plots with 191,200 trees in a forest biodiversity experiment in subtropical China to assess the relationship between community productivity and community-weighted mean (CWM) or functional diversity (FD) values of 38 functional traits. We found that effects of FD values on productivity became larger than effects of CWM values after 7 years of forest development and that the FD values also became more reliable predictors of productivity than the CWM values. In contrast to CWM, FD values consistently increased productivity across ten different species-pool subsets. Our results imply that to promote productivity in the long term it is imperative for forest restoration projects to plant multispecies communities with large functional diversity.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Overview of the research method and hypotheses.
Fig. 2: CWM and FD effects on accumulated stand volume during 10 years of increasing stand age.
Fig. 3: The reliability of CWM and FD values to predict accumulated stand volume during 10 years of increasing stand age.
Fig. 4: Effects of CWM and FD values of 38 traits on accumulated stand volume after 10 years for ten different species-pool subsets.

Data availability

The stand-level tree volume data supporting the findings of this study are available at https://data.botanik.uni-halle.de/bef-china/datasets/640. The species trait data supporting the findings of this study are available at https://data.botanik.uni-halle.de/bef-china/datasets/645.

Code availability

The R code used to create the metadata and perform analyses is available at https://github.com/fjbongers/FD-effects-with-stand-age.

References

  1. Global Assessment Report on Biodiversity and Ecosystem Services (IPBES, 2019).

  2. Bastin, J. F. et al. The global tree restoration potential. Science 366, 76–79 (2019).

    Google Scholar 

  3. Griscom, B. W. et al. Natural climate solutions. Proc. Natl Acad. Sci. USA 114, 11645–11650 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Zhang, J., Fu, B., Stafford-smith, M., Wang, S. & Zhao, W. Improve forest restoration initiatives to meet Sustainable Development Goal 15. Nat. Ecol. Evol. 5, 10–13 (2021).

    CAS  PubMed  Google Scholar 

  5. Holl, K. D. & Brancalion, P. H. S. Tree planting is not a simple solution. Science 368, 580–581 (2020).

    CAS  PubMed  Google Scholar 

  6. Lewis, S. L., Wheeler, C. E., Mitchard, E. T. A. & Koch, A. Restoring natural forests is the best way to remove atmospheric carbon. Nature 568, 25–28 (2019).

    CAS  PubMed  Google Scholar 

  7. Messier, C. et al. For the sake of resilience and multifunctionality, let’s diversify planted forests! Conserv. Lett. https://doi.org/10.1111/conl.12829 (2021).

  8. Baeten, L. et al. Identifying the tree species compositions that maximize ecosystem functioning in European forests. J. Appl. Ecol. 56, 733–744 (2019).

    Google Scholar 

  9. Schuldt, A. et al. Biodiversity across trophic levels drives multifunctionality in highly diverse forests. Nat. Commun. 9, 2989 (2018).

    PubMed  PubMed Central  Google Scholar 

  10. Eisenhauer, N. et al. A multitrophic perspective on biodiversity–ecosystem functioning research. Adv. Ecol. Res. 61, 1–54 (2019).

    PubMed  PubMed Central  Google Scholar 

  11. Isbell, F. et al. High plant diversity is needed to maintain ecosystem services. Nature 477, 199–202 (2011).

    CAS  PubMed  Google Scholar 

  12. Huang, Y. et al. Impacts of species richness on productivity in a large-scale subtropical forest experiment. Science 362, 80–83 (2018).

    CAS  PubMed  Google Scholar 

  13. Liu, X. et al. Tree species richness increases ecosystem carbon storage in subtropical forests. Proc. R. Soc. B 285, 20181240 (2018).

    PubMed  PubMed Central  Google Scholar 

  14. Tobner, C. M. et al. Functional identity is the main driver of diversity effects in young tree communities. Ecol. Lett. 19, 638–647 (2016).

    PubMed  Google Scholar 

  15. Van de Peer, T., Verheyen, K., Ponette, Q., Setiawan, N. N. & Muys, B. Overyielding in young tree plantations is driven by local complementarity and selection effects related to shade tolerance. J. Ecol. 106, 1096–1105 (2018).

    Google Scholar 

  16. Staples, T. L., Dwyer, J. M., England, J. R. & Mayfield, M. M. Productivity does not correlate with species and functional diversity in Australian reforestation plantings across a wide climate gradient. Glob. Ecol. Biogeogr. 28, 1417–1429 (2019).

    Google Scholar 

  17. Cheesman, A. W., Preece, N. D., van Oosterzee, P., Erskine, P. D. & Cernusak, L. A. The role of topography and plant functional traits in determining tropical reforestation success. J. Appl. Ecol. 55, 1029–1039 (2018).

    CAS  Google Scholar 

  18. Ma, L. et al. Species identity and composition effects on community productivity in a subtropical forest. Basic Appl. Ecol. 55, 87–97 (2021).

    Google Scholar 

  19. Gross, N. et al. Functional trait diversity maximizes ecosystem multifunctionality. Nat. Ecol. Evol. 1, 0132 (2017)..

  20. Violle, C. et al. The return of the variance: intraspecific variability in community ecology. Trends Ecol. Evol. 27, 244–252 (2012).

    PubMed  Google Scholar 

  21. Diaz, S. et al. The global spectrum of plant form and function. Nature 529, 167–171 (2016).

    CAS  PubMed  Google Scholar 

  22. Diaz, S. et al. Incorporating plant functional diversity effects in ecosystem service assessments. Proc. Natl Acad. Sci. USA 104, 20684–20689 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Bruelheide, H. et al. Global trait— environment relationships of plant communities. Nat. Ecol. Evol. 2, 1906–1917 (2018).

    PubMed  Google Scholar 

  24. van der Plas, F. et al. Plant traits alone are poor predictors of ecosystem properties and long-term ecosystem functioning. Nat. Ecol. Evol. 4, 1602–1611 (2020).

    PubMed  Google Scholar 

  25. Grime, J. P. Benefits of plant diversity to ecosystems: immediate, filter and founder effects. J. Ecol. 86, 902–910 (1998).

    Google Scholar 

  26. Chiang, J. M. et al. Functional composition drives ecosystem function through multiple mechanisms in a broadleaved subtropical forest. Oecologia 182, 829–840 (2016).

    PubMed  Google Scholar 

  27. Roscher, C. et al. Using plant functional traits to explain diversity–productivity relationships. PLoS ONE 7, e36760 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Barry, K. E. et al. The future of complementarity: disentangling causes from consequences. Trends Ecol. Evol. 34, 167–180 (2019).

    PubMed  Google Scholar 

  29. Tilman, D., Lehman, C. L. & Thomson, K. T. Plant diversity and ecosystem productivity: theoretical considerations. Proc. Natl Acad. Sci. USA 94, 1857–1861 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Turnbull, L., Isbell, F., Purves, D. W., Loreau, M. & Hector, A. Understanding the value of plant diversity for ecosystem functioning through niche theory. Proc. R. Soc. B 283, 20160536 (2016).

    PubMed  PubMed Central  Google Scholar 

  31. Salisbury, C. L. & Potvin, C. Does tree species composition affect productivity in a tropical planted forest? Biotropica 47, 559–568 (2015).

    Google Scholar 

  32. Bruelheide, H. et al. Designing forest biodiversity experiments: general considerations illustrated by a new large experiment in subtropical China. Methods Ecol. Evol. 5, 74–89 (2014).

    Google Scholar 

  33. Chen, Y. et al. Directed species loss reduces community productivity in a subtropical forest biodiversity experiment. Nat. Ecol. Evol. 4, 550–559 (2020).

    PubMed  Google Scholar 

  34. Laliberte, E. & Legendre, P. A distance-based framework for measuring functional diversity from multiple traits. Ecology 91, 299–305 (2010).

    PubMed  Google Scholar 

  35. Allan, E. et al. A comparison of the strength of biodiversity effects across multiple functions. Oecologia 173, 223–237 (2013).

    PubMed  Google Scholar 

  36. Luo, S. et al. Community-wide trait means and variations affect biomass in a biodiversity experiment with tree seedlings. Oikos 129, 799–810 (2020).

    Google Scholar 

  37. Lu, H., Mohren, G. M. J., den Ouden, J., Goudiaby, V. & Sterck, F. J. Overyielding of temperate mixed forests occurs in evergreen–deciduous but not in deciduous–deciduous species mixtures over time in the Netherlands. For. Ecol. Manag. 376, 321–332 (2016).

    Google Scholar 

  38. Toïgo, M. et al. Difference in shade tolerance drives the mixture effect on oak productivity. J. Ecol. 106, 1073–1082 (2018).

    Google Scholar 

  39. Forrester, D. I., Bauhus, J., Cowie, A. L. & Vanclay, J. K. Mixed-species plantations of Eucalyptus with nitrogen-fixing trees: a review. For. Ecol. Manag. 233, 211–230 (2006).

    Google Scholar 

  40. Montagnini, F. & Piotto, D. in Silviculture in the Tropics (eds Günter. S. et al.) 501–511 (Springer, 2011).

  41. Trogisch, S. et al. The significance of tree–tree interactions for forest ecosystem functioning. Basic Appl. Ecol. 55, 33–52 (2021).

    Google Scholar 

  42. Cardinale, B. J. et al. Impacts of plant diversity on biomass production increase through time because of species complementarity. Proc. Natl Acad. Sci. USA 104, 18123–18128 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Guerrero-Ramírez, N. R. et al. Diversity-dependent temporal divergence of ecosystem functioning in experimental ecosystems. Nat. Ecol. Evol. 1, 1639–1642 (2017).

    PubMed  PubMed Central  Google Scholar 

  44. Kunz, M. et al. Neighbour species richness and local structural variability modulate aboveground allocation patterns and crown morphology of individual trees. Ecol. Lett. 22, 2130–2140 (2019).

    PubMed  Google Scholar 

  45. Reich, P. B. et al. Impacts of biodiversity loss escalate through time as redundancy fades. Science 336, 589–592 (2012).

    CAS  PubMed  Google Scholar 

  46. Martínez-Garza, C., Bongers, F. & Poorter, L. Are functional traits good predictors of species performance in restoration plantings in tropical abandoned pastures? For. Ecol. Manag. 303, 35–45 (2013).

    Google Scholar 

  47. Mayoral, C., van Breugel, M., Cerezo, A. & Hall, J. S. Survival and growth of five Neotropical timber species in monocultures and mixtures. For. Ecol. Manag. 403, 1–11 (2017).

    Google Scholar 

  48. Poorter, L. & Bongers, F. Leaf traits are good predictors of plant performance across 53 rain forest species. Ecology 87, 1733–1743 (2006).

    PubMed  Google Scholar 

  49. Ammer, C. Diversity and forest productivity in a changing climate. New Phytol. 221, 50–66 (2019).

    PubMed  Google Scholar 

  50. Brancalion, P. H. S. & Holl, K. D. Guidance for successful tree planting initiatives. J. Appl. Ecol. 57, 2349–2361 (2020).

    Google Scholar 

  51. Ruiz-Jaen, M. & Potvin, C. Can we predict carbon stocks in tropical ecosystems from tree diversity? Comparing species and functional diversity in a plantation and a natural forest. New Phytol. 189, 978–987 (2011).

    PubMed  Google Scholar 

  52. Grossman, J. J., Cavender-Bares, J., Hobbie, S. E., Reich, P. B. & Montgomery, R. A. Species richness and traits predict overyielding in stem growth in an early-successional tree diversity experiment. Ecology 98, 2601–2614 (2017).

    PubMed  Google Scholar 

  53. Kambach, S. et al. How do trees respond to species mixing in experimental compared to observational studies? Ecol. Evol. 9, 11254–11265 (2019).

    PubMed  PubMed Central  Google Scholar 

  54. Finegan, B. et al. Does functional trait diversity predict above-ground biomass and productivity of tropical forests? Testing three alternative hypotheses. J. Ecol. 103, 191–201 (2015).

    Google Scholar 

  55. Piston, N. et al. Multidimensional ecological analyses demonstrate how interactions between functional traits shape fitness and life history strategies. J. Ecol. 107, 2317–2328 (2019).

    Google Scholar 

  56. McDowell, N. et al. Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New Phytol. 178, 719–739 (2008).

    PubMed  Google Scholar 

  57. O’Brien, M. J. et al. A synthesis of tree functional traits related to drought-induced mortality in forests across climatic zones. J. Appl. Ecol. 54, 1669–1686 (2017).

    Google Scholar 

  58. Freschet, G. T. et al. Root traits as drivers of plant and ecosystem functioning: current understanding, pitfalls and future research needs. New Phytol. https://doi.org/10.1111/nph.17072 (2020).

  59. Jucker, T. et al. Good things take time—diversity effects on tree growth shift from negative to positive during stand development in boreal forests. J. Ecol. 108, 2198–2211 (2020).

    Google Scholar 

  60. McGill, B. J., Enquist, B. J., Weiher, E. & Westoby, M. Rebuilding community ecology from functional traits. Trends Ecol. Evol. 21, 178–185 (2006).

    PubMed  Google Scholar 

  61. Laughlin, D. C. The intrinsic dimensionality of plant traits and its relevance to community assembly. J. Ecol. 102, 186–193 (2014).

    Google Scholar 

  62. Fiedler, S., Perring, M. P. & Tietjen, B. Integrating trait-based empirical and modeling research to improve ecological restoration. Ecol. Evol. 8, 6369–6380 (2018).

    PubMed  PubMed Central  Google Scholar 

  63. Zhang, Y., Chen, H. Y. H. & Reich, P. B. Forest productivity increases with evenness, species richness and trait variation: a global meta-analysis. J. Ecol. 100, 742–749 (2012).

    Google Scholar 

  64. Schnabel, F. et al. Drivers of productivity and its temporal stability in a tropical tree diversity experiment. Glob. Change Biol. 25, 4257–4272 (2019).

    Google Scholar 

  65. R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).

  66. Krober, W., Zhang, S., Ehmig, M. & Bruelheide, H. Linking xylem hydraulic conductivity and vulnerability to the leaf economics spectrum—a cross-species study of 39 evergreen and deciduous broadleaved subtropical tree species. PLoS ONE 9, e109211 (2014).

  67. Eichenberg, D., Purschke, O., Ristok, C., Wessjohann, L. & Bruelheide, H. Trade-offs between physical and chemical carbon-based leaf defence: of intraspecific variation and trait evolution. J. Ecol. 103, 1667–1679 (2015).

    CAS  Google Scholar 

  68. Krober, W., Heklau, H. & Bruelheide, H. Leaf morphology of 40 evergreen and deciduous broadleaved subtropical tree species and relationships to functional ecophysiological traits. Plant Biol. 17, 373–383 (2015).

    CAS  PubMed  Google Scholar 

  69. Sokal, R. R. & Rohlf, F. J. Biometry (W.H. Freeman and Company, 1995).

  70. Schmid, B., Baruffol, M., Wang, Z. & Niklaus, P. A. A guide to analyzing biodiversity experiments. J. Plant Ecol. 10, 91–110 (2017).

    Google Scholar 

Download references

Acknowledgements

This study was funded by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB31000000), the National Key Research and Development Program of China (2017YFA0605103), the National Natural Science Foundation of China (31870409) and CAS Interdisciplinary Innovation Team (JCTD-2018-06). X.L. was supported by the Youth Innovation Promotion Association CAS (2019082). F.J.B. was supported by the Chinese Academy of Sciences President’s International Fellowship Initiative. H.B. and G.v.O. gratefully acknowledge the funding by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation (319936945/GRK2324)). B.S. was supported by the University Research Priority Program Global Change and Biodiversity of the University of Zurich. We thank a large number of workers for the tree measurements and maintenance of the experimental sites.

Author information

Authors and Affiliations

Authors

Contributions

X.L. and K.M. conceived the study. S.L., G.v.O., Y.L. and A.C. were responsible for data collection. F.J.B. performed the analyses with contributions from B.S., H.B., F.B. and X.L. The initial manuscript was prepared by F.J.B., X.L. and B.S. All authors helped improve the readability of the text.

Corresponding authors

Correspondence to Keping Ma or Xiaojuan Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Ecology & Evolution thanks Han Chen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bongers, F.J., Schmid, B., Bruelheide, H. et al. Functional diversity effects on productivity increase with age in a forest biodiversity experiment. Nat Ecol Evol 5, 1594–1603 (2021). https://doi.org/10.1038/s41559-021-01564-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-021-01564-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing