The results of biodiversity–ecosystem functioning experiments are realistic


A large body of research shows that biodiversity loss can reduce ecosystem functioning. However, much of the evidence for this relationship is drawn from biodiversity–ecosystem functioning experiments in which biodiversity loss is simulated by randomly assembling communities of varying species diversity, and ecosystem functions are measured. This random assembly has led some ecologists to question the relevance of biodiversity experiments to real-world ecosystems, where community assembly or disassembly may be non-random and influenced by external drivers, such as climate, soil conditions or land use. Here, we compare data from real-world grassland plant communities with data from two of the largest and longest-running grassland biodiversity experiments (the Jena Experiment in Germany and BioDIV in the United States) in terms of their taxonomic, functional and phylogenetic diversity and functional-trait composition. We found that plant communities of biodiversity experiments cover almost all of the multivariate variation of the real-world communities, while also containing community types that are not currently observed in the real world. Moreover, they have greater variance in their compositional features than their real-world counterparts. We then re-analysed a subset of experimental data that included only ecologically realistic communities (that is, those comparable to real-world communities). For 10 out of 12 biodiversity–ecosystem functioning relationships, biodiversity effects did not differ significantly between the full dataset of biodiversity experiments and the ecologically realistic subset of experimental communities. Although we do not provide direct evidence for strong or consistent biodiversity–ecosystem functioning relationships in real-world communities, our results demonstrate that the results of biodiversity experiments are largely insensitive to the exclusion of unrealistic communities and that the conclusions drawn from biodiversity experiments are generally robust.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Experimental versus real-world communities.
Fig. 2: BEF relationships.

Data availability

The data supporting the findings of our study are available at

Code availability

The R code to reproduce the findings and figures of our study is available at


  1. 1.

    Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Tilman, D., Isbell, F. & Cowles, J. M. Biodiversity and ecosystem functioning. Annu. Rev. Ecol. Evol. Syst. 45, 471–493 (2014).

    Google Scholar 

  3. 3.

    Isbell, F. et al. Linking the influence and dependence of people on biodiversity across scales. Nature 546, 65–72 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    van der Plas, F. Biodiversity and ecosystem functioning in naturally assembled communities. Biol. Rev. 94, 1220–1245 (2019).

    PubMed  Google Scholar 

  5. 5.

    Schulze, E.-D. & Mooney, H. Biodiversity and Ecosystem Functioning (Springer, 1993).

  6. 6.

    Naeem, S., Thompson, L. J., Lawler, S. P., Lawton, J. H. & Woodfin, R. M. Declining biodiversity can alter the performance of ecosystems. Nature 368, 734–737 (1994).

    Google Scholar 

  7. 7.

    Balvanera, P. et al. Quantifying the evidence for biodiversity effects on ecosystem functioning and services. Ecol. Lett. 9, 1146–1156 (2006).

    PubMed  Google Scholar 

  8. 8.

    Hines, J. et al. Mapping change in biodiversity and ecosystem function research: food webs foster integration of experiments and science policy. Adv. Ecol. Res. 61, 297–322 (2019).

    Google Scholar 

  9. 9.

    Tilman, D., Wedin, D. & Knops, J. Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature 379, 718–720 (1996).

    CAS  Google Scholar 

  10. 10.

    Roscher, C., Schumacher, J. & Baade, J. The role of biodiversity for element cycling and trophic interactions: an experimental approach in a grassland community. Basic Appl. Ecol. 121, 107–121 (2004).

    Google Scholar 

  11. 11.

    Tilman, D. et al. Diversity and productivity in a long-term grassland experiment. Science 294, 843–845 (2001).

    CAS  PubMed  Google Scholar 

  12. 12.

    Hooper, D. U. et al. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol. Monogr. 75, 3–35 (2005).

    Google Scholar 

  13. 13.

    Cardinale, B. J. et al. The functional role of producer diversity in ecosystems. Am. J. Bot. 98, 572–592 (2011).

    PubMed  Google Scholar 

  14. 14.

    O’Connor, M. I. et al. A general biodiversity–function relationship is mediated by trophic level. Oikos 126, 18–31 (2017).

    Google Scholar 

  15. 15.

    Loreau, M. et al. Biodiversity and ecosystem functioning: current knowledge and future challenges. Science 294, 804–808 (2001).

    CAS  PubMed  Google Scholar 

  16. 16.

    Reich, P. B. et al. Impacts of biodiversity loss escalate through time as redundancy fades. Science 336, 589–592 (2012).

    CAS  PubMed  Google Scholar 

  17. 17.

    Huston, M. A. Hidden treatments in ecological experiments: re-evaluating the ecosystem function of biodiversity. Oecologia 110, 449–460 (1997).

    PubMed  Google Scholar 

  18. 18.

    Grime, J. P. Benefits of plant diversity to ecosystems: immediate, filter and founder effects. J. Ecol. 86, 902–910 (1998).

    Google Scholar 

  19. 19.

    Wardle, D. A. et al. Biodiversity and ecosystem function: an issue in ecology. Bull. Ecol. Soc. Am. 81, 235–239 (2000).

    Google Scholar 

  20. 20.

    Leps, J. What do the biodiversity experiments tell us about consequences of plant species loss in the real world? Basic Appl. Ecol. 5, 529–534 (2004).

    Google Scholar 

  21. 21.

    Srivastava, D. S. & Vellend, M. Biodiversity–ecosystem function research: is it relevant to conservation? Annu. Rev. Ecol. Evol. Syst. 36, 267–294 (2005).

    Google Scholar 

  22. 22.

    Duffy, J. E. Why biodiversity is important to the functioning of real-world ecosystems. Front. Ecol. Environ. 7, 437–444 (2008).

    Google Scholar 

  23. 23.

    Duffy, J. E. Biodiversity effects: trends and exceptions—a reply to Wardle and Jonsson. Front. Ecol. Environ. 8, 11–12 (2010).

    Google Scholar 

  24. 24.

    Wardle, D. A. & Jonsson, M. Biodiversity effects in real ecosystems—a response to Duffy. Front. Ecol. Environ. 8, 10–11 (2010).

    Google Scholar 

  25. 25.

    Wardle, D. A. Do experiments exploring plant diversity–ecosystem functioning relationships inform how biodiversity loss impacts natural ecosystems? J. Veg. Sci. 27, 646–653 (2016).

    Google Scholar 

  26. 26.

    Manning, P. et al. Transferring biodiversity-ecosystem function research to the management of ‘real-world’ ecosystems. Adv. Ecol. Res. 61, 323–356 (2019).

    Google Scholar 

  27. 27.

    Wilsey, B. J. & Potvin, C. Biodiversity and ecosystem functioning: importance of species evenness in an old field. Ecology 81, 887–892 (2000).

    Google Scholar 

  28. 28.

    Wilsey, B. J. & Polley, H. W. Realistically low species evenness does not alter grassland species-richness–productivity relationships. Ecology 85, 2693–2700 (2004).

    Google Scholar 

  29. 29.

    Hillebrand, H., Bennett, D. & Cadotte, M. Consequences of dominance: a review of evenness effects on local and regional ecosystem processes. Ecology 89, 1510–1520 (2008).

    PubMed  Google Scholar 

  30. 30.

    Schmitz, M. et al. Consistent effects of biodiversity on ecosystem functioning under varying density and evenness. Folia Geobot. 48, 335–353 (2013).

    Google Scholar 

  31. 31.

    Finn, J. A. et al. Ecosystem function enhanced by combining four functional types of plant species in intensively managed grassland mixtures: a 3-year continental-scale field experiment. J. Appl. Ecol. 50, 365–375 (2013).

    Google Scholar 

  32. 32.

    Weisser, W. W. et al. Biodiversity effects on ecosystem functioning in a 15-year grassland experiment: patterns, mechanisms, and open questions. Basic Appl. Ecol. 23, 1–73 (2017).

    Google Scholar 

  33. 33.

    Schmid, B. & Hector, A. The value of biodiversity experiments. Basic Appl. Ecol. 5, 535–542 (2004).

    Google Scholar 

  34. 34.

    Eisenhauer, N. et al. Biodiversity–ecosystem function experiments reveal the mechanisms underlying the consequences of biodiversity change in real world ecosystems. J. Veg. Sci. 27, 1061–1070 (2016).

    Google Scholar 

  35. 35.

    Isbell, F. et al. Nutrient enrichment, biodiversity loss, and consequent declines in ecosystem productivity. Proc. Natl Acad. Sci. USA 110, 11911–11916 (2013).

    CAS  PubMed  Google Scholar 

  36. 36.

    Duffy, J. E., Godwin, C. M. & Cardinale, B. J. Biodiversity effects in the wild are common and as strong as key drivers of productivity. Nature 549, 261–264 (2017).

    CAS  PubMed  Google Scholar 

  37. 37.

    Buchmann, T. et al. Connecting experimental biodiversity research to real-world grasslands. Perspect. Plant Ecol. Evol. Syst. 33, 78–88 (2018).

    Google Scholar 

  38. 38.

    Tilman, D. et al. The influence of functional diversity and composition on ecosystem processes. Science 277, 1300–1302 (1997).

    CAS  Google Scholar 

  39. 39.

    Tilman, D., Reich, P. B. & Isbell, F. Biodiversity impacts ecosystem productivity as much as resources, disturbance, or herbivory. Proc. Natl Acad. Sci. USA 109, 10394–10397 (2012).

    CAS  PubMed  Google Scholar 

  40. 40.

    Isbell, F. et al. Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature 526, 574–577 (2015).

    CAS  PubMed  Google Scholar 

  41. 41.

    Fischer, M. et al. Implementing large-scale and long-term functional biodiversity research: the biodiversity exploratories. Basic Appl. Ecol. 11, 473–485 (2010).

    Google Scholar 

  42. 42.

    Soliveres, S. et al. Biodiversity at multiple trophic levels is needed for ecosystem multifunctionality. Nature 536, 456–459 (2016).

    CAS  Google Scholar 

  43. 43.

    Tilman, D. Secondary succession and the pattern of plant dominance along experimental nitrogen gradients. Ecol. Monogr. 57, 189–214 (1987).

    Google Scholar 

  44. 44.

    Clark, C. M. & Tilman, D. Loss of plant species after chronic low-level nitrogen deposition to prairie grasslands. Nature 451, 712–715 (2008).

    CAS  PubMed  Google Scholar 

  45. 45.

    Inouye, R. et al. Old-field succession on a Minnesota sand plain. Ecology 68, 12–26 (1987).

    Google Scholar 

  46. 46.

    Díaz, S. et al. The global spectrum of plant form and function. Nature 529, 167–171 (2015).

    PubMed  Google Scholar 

  47. 47.

    Craven, D. et al. Multiple facets of biodiversity drive the diversity–stability relationship. Nat. Ecol. Evol. 2, 1579–1587 (2018).

    PubMed  Google Scholar 

  48. 48.

    Nakamura, G., Gonçalves, L. O. & da Silva Duarte, L. Revisiting the dimensionality of biological diversity. Ecography (Cop.) 43, 539–548 (2020).

    Google Scholar 

  49. 49.

    Stevens, R. D. & Tello, J. S. On the measurement of dimensionality of biodiversity. Glob. Ecol. Biogeogr. 23, 1115–1125 (2014).

    Google Scholar 

  50. 50.

    Manning, P. et al. Simple measures of climate, soil properties and plant traits predict national-scale grassland soil carbon stocks. J. Appl. Ecol. 52, 1188–1196 (2015).

    CAS  Google Scholar 

  51. 51.

    Adler, D. & Kelly, T. vioplot: Violin plot. R package version 0.3.0 (2018).

  52. 52.

    Loreau, M. & Hector, A. Partitioning selection and complementarity in biodiversity experiments. Nature 412, 72–76 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Allan, E. et al. Land use intensification alters ecosystem multifunctionality via loss of biodiversity and changes to functional composition. Ecol. Lett. 18, 834–843 (2015).

    PubMed  PubMed Central  Google Scholar 

  54. 54.

    Le Bagousse-Pinguet, Y. et al. Phylogenetic, functional, and taxonomic richness have both positive and negative effects on ecosystem multifunctionality. Proc. Natl Acad. Sci. USA 116, 8419–8424 (2019).

    PubMed  Google Scholar 

  55. 55.

    Venail, P. et al. Species richness, but not phylogenetic diversity, influences community biomass production and temporal stability in a re-examination of 16 grassland biodiversity studies. Funct. Ecol. 29, 615–626 (2015).

    Google Scholar 

  56. 56.

    Hillebrand, H. & Matthiessen, B. Biodiversity in a complex world: consolidation and progress in functional biodiversity research. Ecol. Lett. 12, 1405–1419 (2009).

    PubMed  Google Scholar 

  57. 57.

    Grace, J. B. et al. Integrative modelling reveals mechanisms linking productivity and plant species richness. Nature 529, 390–393 (2016).

    CAS  PubMed  Google Scholar 

  58. 58.

    Liang, J. et al. Positive biodiversity–productivity relationship predominant in global forests. Science 354, aaf8957 (2016).

    PubMed  Google Scholar 

  59. 59.

    Oehri, J., Schmid, B., Schaepman-Strub, G. & Niklaus, P. A. Biodiversity promotes primary productivity and growing season lengthening at the landscape scale. Proc. Natl Acad. Sci. USA 114, 10160–10165 (2017).

    CAS  PubMed  Google Scholar 

  60. 60.

    Díaz, S. et al. Incorporating plant functional diversity effects in ecosystem service assessments. Proc. Natl Acad. Sci. USA 104, 20684–20689 (2007).

    PubMed  Google Scholar 

  61. 61.

    Lavorel, S. et al. Using plant functional traits to understand the landscape distribution of multiple ecosystem services. J. Ecol. 99, 135–147 (2011).

    Google Scholar 

  62. 62.

    Schmid, B. The species richness–productivity controversy. Trends Ecol. Evol. 17, 113–114 (2002).

    Google Scholar 

  63. 63.

    Loreau, M. Biodiversity and ecosystem functioning: a mechanistic model. Proc. Natl Acad. Sci. USA 95, 5632–5636 (1998).

    CAS  PubMed  Google Scholar 

  64. 64.

    Maestre, F. T. et al. Plant species richness and ecosystem multifunctionality in global drylands. Science 335, 214–218 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. 65.

    van der Plas, F. et al. Jack-of-all-trades effects drive biodiversity–ecosystem multifunctionality relationships in European forests. Nat. Commun. 7, 11109 (2016).

    PubMed  PubMed Central  Google Scholar 

  66. 66.

    Socher, S. A. et al. Direct and productivity-mediated indirect effects of fertilization, mowing and grazing on grassland species richness. J. Ecol. 100, 1391–1399 (2012).

    Google Scholar 

  67. 67.

    Hobbs, R. J., Higgs, E. & Harris, J. A. Novel ecosystems: implications for conservation and restoration. Trends Ecol. Evol. 24, 599–605 (2009).

    PubMed  Google Scholar 

  68. 68.

    Klaus, V. H. et al. Do biodiversity–ecosystem functioning experiments inform stakeholders how to simultaneously conserve biodiversity and increase ecosystem service provisioning in grasslands? Biol. Conserv. 245, 108552 (2020).

    Google Scholar 

  69. 69.

    Roscher, C. et al. Convergent high diversity in naturally colonized experimental grasslands is not related to increased productivity. Perspect. Plant Ecol. Evol. Syst. 20, 32–45 (2016).

    Google Scholar 

  70. 70.

    Ellenberg, H. & Leuschner, C. Vegetation Mitteleuropas mit den Alpen: In Ökologischer, Dynamischer und Historischer Sicht (UTB, 2010).

  71. 71.

    Blüthgen, N. et al. A quantitative index of land-use intensity in grasslands: integrating mowing, grazing and fertilization. Basic Appl. Ecol. 13, 207–220 (2012).

    Google Scholar 

  72. 72.

    Tilman, D., Reich, P. B. & Knops, J. M. H. Biodiversity and ecosystem stability in a decade-long grassland experiment. Nature 441, 629–632 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. 73.

    Tilman, D. Community invasibility, recruitment limitation, and grassland biodiversity. Ecology 78, 81–92 (1997).

    Google Scholar 

  74. 74.

    Catford, J. A. et al. Traits linked with species invasiveness and community invasibility vary with time, stage and indicator of invasion in a long-term grassland experiment. Ecol. Lett. 22, 593–604 (2019).

    PubMed  Google Scholar 

  75. 75.

    Fargione, J. et al. From selection to complementarity: shifts in the causes of biodiversity–productivity relationships in a long-term biodiversity experiment. Proc. R. Soc. B 274, 871–876 (2007).

    PubMed  Google Scholar 

  76. 76.

    Londo, G. The decimal scale for releves of permanent quadrats. Vegetatio 33, 61–64 (1976).

    Google Scholar 

  77. 77.

    Roscher, C. et al. What happens to the sown species if a biodiversity experiment is not weeded? Basic Appl. Ecol. 14, 187–198 (2013).

    Google Scholar 

  78. 78.

    Kattge, J. et al. TRY—a global database of plant traits. Glob. Change Biol. 17, 2905–2935 (2011).

    Google Scholar 

  79. 79.

    Cayuela, L., Stein, A. & Oksanen, J. Taxonstand: Taxonomic standardization of plant species names. R package version 2.1 (2017).

  80. 80.

    The Plant List version 1.1 (2013);

  81. 81.

    Qian, H. & Jin, Y. An updated megaphylogeny of plants, a tool for generating plant phylogenies and an analysis of phylogenetic community structure. J. Plant Ecol. 9, 233–239 (2016).

    Google Scholar 

  82. 82.

    Martins, W. S., Carmo, W. C., Longo, H. J., Rosa, T. C. & Rangel, T. F. SUNPLIN: simulation with uncertainty for phylogenetic investigations. BMC Bioinform. 14, 324 (2013).

    Google Scholar 

  83. 83.

    Rangel, T. F. et al. Phylogenetic uncertainty revisited: implications for ecological analyses. Evolution 69, 1301–1312 (2015).

    PubMed  Google Scholar 

  84. 84.

    Cornelissen, J. H. C. et al. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust. J. Bot. 51, 335–380 (2003).

    Google Scholar 

  85. 85.

    Goolsby, E. W., Bruggeman, J. & Ane, C. Rphylopars: Phylogenetic comparative tools for missing data and within-species variation. R package version 0.2.9 (2016).

  86. 86.

    Penone, C. et al. Imputation of missing data in life-history trait datasets: which approach performs the best? Methods Ecol. Evol. 5, 961–970 (2014).

    Google Scholar 

  87. 87.

    Oksanen, J. et al. Vegan: Community ecology package. R package version 2.3-4 (2016).

  88. 88.

    Hill, M. Diversity and evenness: a unifying notation and its consequences. Ecology 54, 427–432 (1973).

    Google Scholar 

  89. 89.

    Smith, B. & Wilson, J. B. A consumer’s guide to evenness indices. Oikos 76, 70–82 (1996).

    Google Scholar 

  90. 90.

    Magurran, A. Measuring Biological Diversity (Blackwell, 2004).

  91. 91.

    Morris, E. K. et al. Choosing and using diversity indices: insights for ecological applications from the German biodiversity exploratories. Ecol. Evol. 4, 3514–3524 (2014).

    PubMed  PubMed Central  Google Scholar 

  92. 92.

    Tucker, C. M. et al. A guide to phylogenetic metrics for conservation, community ecology and macroecology. Biol. Rev. 92, 698–715 (2017).

    PubMed  Google Scholar 

  93. 93.

    Kembel, S. W. et al. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26, 1463–1464 (2010).

    CAS  PubMed  Google Scholar 

  94. 94.

    Villéger, S., Mason, N. W. H. & Mouillot, D. New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89, 2290–2301 (2008).

    PubMed  Google Scholar 

  95. 95.

    Laliberte, E. & Legendre, P. A distance-based framework for measuring functional diversity from multiple traits. Ecology 91, 299–305 (2010).

    PubMed  Google Scholar 

  96. 96.

    Mouchet, M. A., Villéger, S., Mason, N. W. H. & Mouillot, D. Functional diversity measures: an overview of their redundancy and their ability to discriminate community assembly rules. Funct. Ecol. 24, 867–876 (2010).

    Google Scholar 

  97. 97.

    Laliberté, E., Legendre, P. & Shipley, B. FD: Measuring functional diversity from multiple traits, and other tools for functional ecology. R package version 1.0-12 (2014).

  98. 98.

    R: A Language and Environment for Statistical Computing v.3.4.2 (R Core Team, 2019);

  99. 99.

    Dormann, C. F. et al. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography (Cop.) 36, 27–46 (2013).

    Google Scholar 

  100. 100.

    Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1, 3–14 (2010).

    Google Scholar 

  101. 101.

    Jochum, M. et al. R-code and aggregated data from: The results of biodiversity-ecosystem functioning experiments are realistic. iDiv Data Repository (2020).

  102. 102.

    Fox, J. & Weisberg, S. An R Companion to Applied Regression (SAGE, 2011).

  103. 103.

    Pebesma, E. & Bivand, R. Classes and methods for spatial data in R. R News 5, 9–13 (2005).

    Google Scholar 

  104. 104.

    Bivand, R. S., Pebesma, E. & Gomez-Rubio, V. Applied Spatial Data Analysis with R (Springer, 2013).

  105. 105.

    Habel, K., Grasman, R., Gramacy, R. B., Stahel, A. & Sterratt, D. C. geometry: Mesh generation and surface tessellation. R package version 0.4.1 (2019).

  106. 106.

    Blonder, B. & Harris, D. hypervolume: High dimensional geometry and set operations using kernel density estimation, support vector machines, and convex hulls. R package version 2.0.11 (2018).

  107. 107.

    Meyer, S. T. et al. Effects of biodiversity strengthen over time as ecosystem functioning declines at low and increases at high biodiversity. Ecosphere 7, e01619 (2016).

    Google Scholar 

  108. 108.

    Brownrigg, R. mapdata: Extra map databases. R package version 2.3.0 (2018).

Download references


We thank the establishers, maintainers, coordinators, technical and research staff, and data owners of all involved projects, as well as the TRY initiative. We thank S. Soliveres and E. Allan for discussion; S. Thiel, G. Luo, D. Bahauddin and F. Schneider for help with data extraction and handling; and R. Junker and B. Blonder for assistance with the calculation of multidimensional hypervolumes. This study was funded through Jena Experiment SP 7 (Swiss National Science Foundation grant no. 310030E-166017/1). Further support came from the German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, funded by the German Research Foundation (grant no. FZT 118). The Jena Experiment was funded by the Deutsche Forschungsgemeinschaft (grant nos FOR 456 and FOR 1451) with additional support from Friedrich Schiller University Jena, the Max Planck Institute for Biogeochemistry in Jena and the Swiss National Science Foundation. All Cedar Creek studies are funded by the US National Science Foundation’s Long-Term Ecological Research (LTER) programme (grant no. DEB-1234162). F.I. acknowledges funding from the LTER Network Communications Office (grant no. DEB-1545288). We thank the iDiv Data Repository for hosting our R code and aggregated datasets and for performing the related quality checks.

Author information




M.J., P.M., M.F. and F.v.d.P. conceived and designed the study. M.J., M.F., F.I., C.R., S.B., G.B., N.B., J.A.C., J.C.-B., A.E., N.E., G.G., N.H., J.K., V.H.K., T.K., M.L., G.L.P., S.T.M., L.M., Y.O., D.P., P.B.R., D.S., S.S., B.S., D.T., T.T., A.V., C.W., A.W., W.W.W., W.W. and P.M. contributed data. M.J. developed the analytical framework and analysed the data. R.M.-V. constructed the phylogenetic hypothesis trees. M.J. and P.M. wrote the manuscript. M.J., M.F., F.I., C.R., F.v.d.P., S.B., G.B., N.B., J.A.C., J.C.-B., A.E., N.E., G.G., N.H., J.K., V.H.K., T.K., M.L., G.L.P., S.T.M., R.M.-V., L.M., Y.O., C.P., D.P., P.B.R., A.R., D.S., S.S., B.S., D.T., T.T., A.V., C.W., A.W., W.W.W., W.W. and P.M. contributed to the discussion of the results and writing of the manuscript.

Corresponding author

Correspondence to Malte Jochum.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 List of German and US datasets for vegetation and ecosystem function data.

Lists country, project name, project code used in this paper, main reference, number of plots we used, years we have vegetation data for, functions we used including years. Most of the raw data is openly available in various online repositories: Jena Experiment (, Biodiversity Exploratories (, Cedar Creek ( Data from the Saale grasslands (Jena real world) were provided by Christiane Roscher and are currently not openly available. Aggregated datasets used for this study are now available online101.

Extended Data Fig. 2 Temporal movement of Jena invasion communities into the real-world realm.

Based on the PCA in Fig. 1a. Different shades of purple show Jena invasion communities across the years from 2003-2009. Orange and gray ellipses show 95% confidence intervals for Jena Experiment and combined real-world plots (but their communities are not plotted here), respectively. Note that while the points in different panels are from single years, the ellipses are fixed to the across-year comparison in Fig. 1a. The last panel shows the PCA factor loadings for the 12 vif-selected community properties (arrows scaled to improve visibility - “const=25” in R vegan “biplot” function87). Within six years of succession, the plant communities of Jena invasion plots fully “moved” into the core of the community property space defined by the combined real-world plots (German real world and Jena real world, respectively).

Extended Data Fig. 3 Violin plots of all 21 community properties of German data.

Experimental (E, Jena Experiment, strong orange, 82 plots), unrealistic experimental (unreal., intermediate orange, 59 plots), selected realistic experimental (real., weak orange, 23 plots) and combined real-world plots (German real world, Jena real world, gray, 164 plots), all averaged across years per plot. Combination of boxplot and rotated kernel density plot (R package “vioplot”51). Realistic plots were calculated based on the 12 vif-selected community properties and the convex hull volume method. Units: leaf area (mm²), leaf dry mass (mg), leaf dry matter content (LDMC, g/g), leaf nitrogen concentration (leaf N, mg/g), leaf phosphorus concentration (leaf P, mg/g), plant height (m), specific leaf area (SLA, mm²/mg) and seed mass (dry mass in mg). Other community properties are dimensionless.

Extended Data Fig. 4 Violin plots of all 21 community properties of US data.

Experimental (E, BioDIV, strong orange, 159 plots), unrealistic experimental (unreal., intermediate orange, 37 plots), selected realistic experimental (real., weak orange, 122 plots) and combined real-world plots (Fertilization 1 & 2, gray, 369 plots), all averaged across years per plot. Combination of boxplot and rotated kernel density plot (R package “vioplot”51). Realistic plots were calculated based on the 12 vif-selected community properties and the convex hull volume method. Units: leaf area (mm²), leaf dry mass (mg), leaf dry matter content (LDMC, g/g), leaf nitrogen concentration (leaf N, mg/g), leaf phosphorus concentration (leaf P, mg/g), plant height (m), specific leaf area (SLA, mm²/mg) and seed mass (dry mass in mg). Other community properties are dimensionless.

Extended Data Fig. 5 Model parameters for BEF relationships presented in Fig. 2.

Values are presented for unconstrained (u) and constrained (c) models of Jena (J) and BioDIV BEF relationships. Constraining was done using the 12 vif-selected community properties and the convex hull method. Sample size (n), slope estimates (slop), lower (low) and upper (upp) 95% confidence intervals, p-values (p) and adjusted R2 values (R2). All values are rounded to two decimal places.

Extended Data Fig. 6 Variance explained by 12 PCA axes (12 vif-selected community properties).

Percentage of total variance explained by each of the 12 PCA axes (PC’s, see Fig. 1) for each region (GER = Germany and US = USA). Rounded to two decimal places.

Extended Data Fig. 7 PCA scores for 12 vif-selected community properties of PCA’s in Fig. 1.

Scores have been produced using the scores() command of the “vegan” package87 in R and have been rounded to two decimal places.

Supplementary information

Supplementary Information

Supplementary Figs. 1–10, Tables 1–17, Supplementary Information on Sensitivity Analyses 1 and 2, and methods.

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jochum, M., Fischer, M., Isbell, F. et al. The results of biodiversity–ecosystem functioning experiments are realistic. Nat Ecol Evol (2020).

Download citation

Further reading

  • Plant traits alone are poor predictors of ecosystem properties and long-term ecosystem functioning

    • Fons van der Plas
    • , Thomas Schröder-Georgi
    • , Alexandra Weigelt
    • , Kathryn Barry
    • , Sebastian Meyer
    • , Adriana Alzate
    • , Romain L. Barnard
    • , Nina Buchmann
    • , Hans de Kroon
    • , Anne Ebeling
    • , Nico Eisenhauer
    • , Christof Engels
    • , Markus Fischer
    • , Gerd Gleixner
    • , Anke Hildebrandt
    • , Eva Koller-France
    • , Sophia Leimer
    • , Alexandru Milcu
    • , Liesje Mommer
    • , Pascal A. Niklaus
    • , Yvonne Oelmann
    • , Christiane Roscher
    • , Christoph Scherber
    • , Michael Scherer-Lorenzen
    • , Stefan Scheu
    • , Bernhard Schmid
    • , Ernst-Detlef Schulze
    • , Vicky Temperton
    • , Teja Tscharntke
    • , Winfried Voigt
    • , Wolfgang Weisser
    • , Wolfgang Wilcke
    •  & Christian Wirth

    Nature Ecology & Evolution (2020)


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing