Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Ten recent insights for our understanding of cooperation

Abstract

Since Hamilton published his seminal papers in 1964, our understanding of the importance of cooperation for life on Earth has evolved beyond recognition. Early research was focused on altruism in the social insects, where the problem of cooperation was easy to see. In more recent years, research into cooperation has expanded across the entire tree of life, and has been revolutionized by advances in genetic, microbiological and analytical techniques. We highlight ten insights that have arisen from these advances, which have illuminated generalizations across different taxa, making the world simpler to explain. Furthermore, progress in these areas has opened up numerous new problems to solve, suggesting exciting directions for future research.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Cooperation across the tree of life.
Fig. 2: Group formation and relatedness.
Fig. 3: Two ways to stable mutualism.

References

  1. Bourke, A. F. G. Principles of Social Evolution (OUP, 2011).

  2. Hamilton, W. D. The genetical evolution of social behaviour. I & II. J. Theor. Biol. 7, 1–52 (1964).

    Article  CAS  PubMed  Google Scholar 

  3. Sachs, J. L., Mueller, U. G., Wilcox, T. P. & Bull, J. J. The evolution of cooperation. Q. Rev. Biol. 79, 135–160 (2004).

    Article  PubMed  Google Scholar 

  4. Lehmann, L. & Keller, L. The evolution of cooperation and altruism – a general framework and a classification of models. J. Evol. Biol. 19, 1365–1376 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. West, S. A., Griffin, A. S. & Gardner, A. Evolutionary explanations for cooperation. Curr. Biol. 17, R661–R672 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Trivers, R. The evolution of reciprocal altruism. Q. Rev. Biol. 46, 35–57 (1971).

    Article  Google Scholar 

  7. Velicer, G. J., Kroos, L. & Lenski, R. E. Developmental cheating in the social bacterium Myxococcus xanthus. Nature 404, 598–601 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. McCutcheon, J. P. & Moran, N. A. Parallel genomic evolution and metabolic interdependence in an ancient symbiosis. Proc. Natl Acad. Sci. USA 104, 19392–19397 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Spribille, T. et al. Basidiomycete yeasts in the cortex of ascomycete macrolichens. Science 353, 488–492 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ostrowski, E. A. et al. Genomic signatures of cooperation and conflict in the social amoeba. Curr. Biol. 25, 1661–1665 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hadfield, J. D. & Nakagawa, S. General quantitative genetic methods for comparative biology: phylogenies, taxonomies and multi-trait models for continuous and categorical characters. J. Evol. Biol. 23, 494–508 (2010).

    Article  CAS  PubMed  Google Scholar 

  12. Garamszegi, L. Z. Modern Phylogenetic Comparative Methods and Their Application in Evolutionary Biology (Springer, 2014).

  13. Cornwallis, C. K. et al. Cooperation facilitates the colonization of harsh environments. Nat. Ecol. Evol. 1, 0057 (2017).

    Article  Google Scholar 

  14. Strassmann, J. E., Zhu, Y. & Queller, D. C. Altruism and social cheating in the social amoeba Dictyostelium discoideum. Nature 408, 965–967 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Griffin, A. S., West, S. A. & Buckling, A. Cooperation and competition in pathogenic bacteria. Nature 430, 1024–1027 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Turner, P. E. & Chao, L. Prisoner’s dilemma in an RNA virus. Nature 398, 441–443 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. West, S. A., Griffin, A. S. & Gardner, A. Social semantics: altruism, cooperation, mutualism, strong reciprocity and group selection. J. Evol. Biol. 20, 415–432 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Queller, D. C. & Strassmann, J. E. Kin selection and social insects. BioScience 48, 165–175 (1998).

    Article  Google Scholar 

  19. Boomsma, J. J. Kin selection versus sexual selection: why the ends do not meet. Curr. Biol. 17, R673–R683 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Reeve, H. K. & Keller, L. Partitioning of reproduction in mother–daughter versus sibling associations - a test of optimal skew theory. Am. Nat. 145, 119–132 (1995).

    Article  Google Scholar 

  21. Hughes, W. O. H., Oldroyd, B. P., Beekman, M. & Ratnieks, F. L. W. Ancestral monogamy shows kin selection is key to the evolution of eusociality. Science 320, 1213–1216 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Fisher, R. M., Cornwallis, C. K. & West, S. A. Group formation, relatedness,and the evolution of multicellularity. Curr. Biol. 23, 1120–1125 (2013).

    Article  CAS  PubMed  Google Scholar 

  23. Downing, P. A., Griffin, A. S. & Cornwallis, C. K. Group formation and the evolutionary pathway to complex sociality in birds. Nat. Ecol. Evol. 215, 479–486 (2020).

    Article  Google Scholar 

  24. Cornwallis, C. K., West, S. A., Davis, K. E. & Griffin, A. S. Promiscuity and the evolutionary transition to complex societies. Nature 466, 969–972 (2011).

    Article  Google Scholar 

  25. Duffy, J. E. & Macdonald, K. S. Kin structure, ecology and the evolution of social organization in shrimp: a comparative analysis. Proc. R. Soc. B 277, 575–584 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Green, J. P. & Hatchwell, B. J. Inclusive fitness consequences of dispersal decisions in a cooperatively breeding bird, the long-tailed tit (Aegithalos caudatus). Proc. Natl Acad. Sci. USA 115, 12011–12016 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Diggle, S. P., West, S. A., Griffin, A. S. & Campbell, G. S. Cooperation and conflict in quorum-sensing bacterial populations. Nature 450, 411–414 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Rumbaugh, K. P. et al. Kin selection, quorum sensing and virulence in pathogenic bacteria. Proc. R. Soc. B 279, 3584–3588 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Pollitt, E. J. G., West, S. A., Crusz, S. A., Burton-Chellew, M. N. & Diggle, S. P. Cooperation, quorum sensing, and evolution of virulence in Staphylococcus aureus. Infect. Immun. 82, 1045–1051 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Kuzdzal-Fick, J. J., Queller, D. C., Fox, S. A. & Strassmann, J. E. High relatedness is necessary and sufficient to maintain multicellularity in Dictyostelium. Science 334, 1548–1551 (2011).

    Article  CAS  PubMed  Google Scholar 

  31. Bastiaans, E., Debets, A. J. M. & Aanen, D. K. Experimental evolution reveals that high relatedness protects multicellular cooperation from cheaters. Nat. Commun. 7, 11435 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Frost, I. et al. Cooperation, competition and antibiotic resistance in bacterial colonies. ISME J. 12, 1582–1593 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Linksvayer, T. A. & Wade, M. J. Genes with social effects are expected to harbor more sequence variation within and between species. Evolution 63, 1685–1696 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Van Dyken, J. D. & Wade, M. J. Detecting the molecular signature of social conflict: theory and a test with bacterial quorum sensing genes. Am. Nat. 179, 436–450 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Hall, D. W. & Goodisman, M. A. D. The effects of kin selection on rates of molecular evolution in social insects. Evolution 66, 2080–2093 (2012).

    Article  PubMed  Google Scholar 

  36. Hall, D. W., Yi, S. V. & Goodisman, M. A. D. Kin selection, genomics and caste-antagonistic pleiotropy. Biol. Lett. 9, 20130309 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Hunt, B. G. et al. Relaxed selection is a precursor to the evolution of phenotypic plasticity. Proc. Natl Acad. Sci. USA 108, 15936–15941 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hunt, B. G. et al. Sociality is linked to rates of protein evolution in a highly social insect. Mol. Biol. Evol. 27, 497–500 (2010).

    Article  CAS  PubMed  Google Scholar 

  39. Warner, M. R., Mikheyev, A. S. & Linksvayer, T. A. Genomic signature of kin selection in an ant with obligately sterile workers. Mol. Biol. Evol. 34, 1780–1787 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Noh, S., Geist, K. S., Tian, X., Strassmann, J. E. & Queller, D. C. Genetic signatures of microbial altruism and cheating in social amoebas in the wild. Proc. Natl Acad. Sci. USA 115, 3096–3101 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. de Oliveira, J. L. et al. Conditional expression explains molecular evolution of social genes in a microbe. Nat. Commun. 10, 3284 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Nadell, C. D., Drescher, K. & Foster, K. R. Spatial structure, cooperation and competition in biofilms. Nat. Rev. Microbiol. 14, 589–600 (2016).

    Article  CAS  PubMed  Google Scholar 

  43. Xavier, J. B. & Foster, K. R. Cooperation and conflict in microbial biofilms. Proc. Natl Acad. Sci. USA 104, 876–881 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kümmerli, R., Griffin, A. S., West, S. A., Buckling, A. & Harrison, F. Viscous medium promotes cooperation in the pathogenic bacterium Pseudomonas aeruginosa. Proc. R. Soc. B 276, 3531–3538 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Drescher, K., Nadell, C. D., Stone, H. A., Wingreen, N. S. & Bassler, B. L. Solutions to the public goods dilemma in bacterial biofilms. Curr. Biol. 24, 50–55 (2014).

    Article  CAS  PubMed  Google Scholar 

  46. Bruce, J. B., West, S. A. & Griffin, A. S. Functional amyloids promote retention of public goods in bacteria. Proc. R. Soc. B 286, 20190709 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mehdiabadi, N. J. et al. Kin preference in a social microbe. Nature 442, 881–882 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Barve, S., Koenig, W. D., Haydock, J. & Walters, E. L. Habitat saturation results in joint-nesting female coalitions in a social bird. Am. Nat. 193, 830–840 (2019).

    Article  PubMed  Google Scholar 

  49. Green, J. P. et al. The genetic basis of kin recognition in a cooperatively breeding mammal. Curr. Biol. 25, 2631–2641 (2015).

    Article  CAS  PubMed  Google Scholar 

  50. Lihoreau, M. & Rivault, C. Kin recognition via cuticular hydrocarbons shapes cockroach social life. Behav. Ecol. 20, 46–53 (2008).

    Article  Google Scholar 

  51. Nam, K.-B., Simeoni, M., Sharp, S. P. & Hatchwell, B. J. Kinship affects investment by helpers in a cooperatively breeding bird. Proc. R. Soc. B 277, 3299–3306 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Madgwick, P. G., Stewart, B., Belcher, L. J., Thompson, C. R. L. & Wolf, J. B. Strategic investment explains patterns of cooperation and cheating in a microbe. Proc. Natl Acad. Sci. USA 115, E4823–E4832 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Guerrieri, F. J. et al. Ants recognize foes and not friends. Proc. R. Soc. B 276, 2461–2468 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Duffy, E., Morrison, C. & Macdonald, K. Colony defense and behavioral differentiation in the eusocial shrimp Synalpheus regalis. Behav. Ecol. Sociobiol. 51, 488–495 (2002).

    Article  Google Scholar 

  55. Leedale, A. E., Lachlan, R. F., Robinson, E. J. H. & Hatchwell, B. J. Helping decisions and kin recognition in long-tailed tits: is call similarity used to direct help towards kin? Phil. Trans. R. Soc. B 375, 20190565 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Cornwallis, C. K., West, S. A. & Griffin, A. S. Routes to indirect fitness in cooperatively breeding vertebrates: kin discrimination and limited dispersal. J. Evol. Biol. 22, 2445–2457 (2009).

    Article  CAS  PubMed  Google Scholar 

  57. Duncan, C., Gaynor, D., Clutton-Brock, T. H. & Dyble, M. The evolution of indiscriminate altruism in a cooperatively breeding mammal. Am. Nat. 193, 841–851 (2019).

    Article  PubMed  Google Scholar 

  58. Thompson, F. J. et al. Explaining negative kin discrimination in a cooperative mammal society. Proc. Natl Acad. Sci. USA 114, 5207–5212 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hamilton, W. D. & May, R. M. Dispersal in stable habitats. Nature 269, 578–581 (1977).

    Article  Google Scholar 

  60. Bourke, A. F. G. Hamilton’s rule and the causes of social evolution. Phil. Trans. R. Soc. B 369, 20130362 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Hatchwell, B. J., Gullett, P. R. & Adams, M. J. Helping in cooperatively breeding long-tailed tits: a test of Hamilton’s rule. Phil Trans. R. Soc. B 369, 20130565 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Domingo-Calap, P., Segredo-Otero, E., Duran-Moreno, M. & Sanjuán, R. Social evolution of innate immunity evasion in a virus. Nat. Microbiol. 4, 1006–1013 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Firman, R. C., Rubenstein, D. R., Moran, J. M., Rowe, K. C. & Buzatto, B. A. Extreme and variable climatic conditions drive the evolution of sociality in Australian rodents. Curr. Biol. 30, 691–697 (2020).

    Article  CAS  PubMed  Google Scholar 

  64. Arnold, K. E. & Owens, I. Cooperative breeding in birds: the role of ecology. Behav. Ecol. 10, 465–471 (1999).

    Article  Google Scholar 

  65. Jetz, W. & Rubenstein, D. R. Environmental uncertainty and the global biogeography of cooperative breeding in birds. Curr. Biol. 21, 72–78 (2010).

    Article  PubMed  Google Scholar 

  66. Rubenstein, D. R. & Lovette, I. J. Temporal environmental variability drives the evolution of cooperative breeding in birds. Curr. Biol. 17, 1414–1419 (2007).

    Article  CAS  PubMed  Google Scholar 

  67. Brooks, K. C., Maia, R., Duffy, J. E., Hultgren, K. M. & Rubenstein, D. R. Ecological generalism facilitates the evolution of sociality in snapping shrimps. Ecol. Lett. 20, 1516–1525 (2017).

    Article  PubMed  Google Scholar 

  68. Lin, Y.-H., Chan, S.-F., Rubenstein, D. R., Liu, M. & Shen, S.-F. Resolving the paradox of environmental quality and sociality: the ecological causes and consequences of cooperative breeding in two lineages of birds. Am. Nat. 194, 207–216 (2019).

    Article  PubMed  Google Scholar 

  69. Lukas, D. & Clutton-Brock, T. H. Cooperative breeding and monogamy in mammalian societies. Proc. R. Soc. B 279, 2151–2156 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Cornwallis, C. K., West, S. A., Davis, K. E. & Griffin, A. S. Promiscuity and the evolutionary transition to complex societies. Nature 466, 969–972 (2010).

    Article  CAS  PubMed  Google Scholar 

  71. Queller, D. C. et al. Unrelated helpers in a social insect. Nature 405, 784–787 (2000).

    Article  CAS  PubMed  Google Scholar 

  72. Leadbeater, E., Carruthers, J. M., Green, J. P., Rosser, N. S. & Field, J. Nest inheritance is the missing source of direct fitness in a primitively eusocial insect. Science 333, 874–876 (2011).

    Article  CAS  PubMed  Google Scholar 

  73. Korb, J. & Hartfelder, K. Life history and development - a framework for understanding developmental plasticity in lower termites. Biol. Rev. 83, 295–313 (2008).

    Article  PubMed  Google Scholar 

  74. Downing, P. A., Griffin, A. S. & Cornwallis, C. K. Sex differences in helping effort reveal the effect of future reproduction on cooperative behaviour in birds. Proc. R. Soc. B 285, 20181164 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Downing, P. A., Cornwallis, C. K. & Griffin, A. S. Sex, long life and the evolutionary transition to cooperative breeding in birds. Proc. R. Soc. B 282, 20151663 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Komdeur, J. Importance of habitat saturation and territory quality for evolution of cooperative breeding in the Seychelles warbler. Nature 358, 493–495 (1992).

    Article  Google Scholar 

  77. Clutton-Brock, T. H. et al. Contributions to cooperative rearing in meerkats. Anim. Behav. 61, 705–710 (2001).

    Article  Google Scholar 

  78. Field, J., Cronin, A. & Bridge, C. Future fitness and helping in social queues. Nature 441, 214–217 (2006).

    Article  CAS  PubMed  Google Scholar 

  79. Cant, M. A., Llop, J. B. & Field, J. Individual variation in social aggression and the probability of inheritance: theory and a field test. Am. Nat. 167, 837–852 (2006).

    Article  PubMed  Google Scholar 

  80. Darch, S. E., West, S. A., Winzer, K. & Diggle, S. P. Density-dependent fitness benefits in quorum-sensing bacterial populations. Proc. Natl Acad. Sci. USA 109, 8259–8263 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Biernaskie, J. M. & West, S. A. Cooperation, clumping and the evolution of multicellularity. Proc. R. Soc. B 282, 20151075 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Koschwanez, J. H., Foster, K. R. & Murray, A. W. Improved use of a public good selects for the evolution of undifferentiated multicellularity. eLife 2, e00367 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Sexton, D. J. & Schuster, M. Nutrient limitation determines the fitness of cheaters in bacterial siderophore cooperation. Nat. Commun. 8, 230 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Connelly, B. D., Bruger, E. L., McKinley, P. K. & Waters, C. M. Resource abundance and the critical transition to cooperation. J. Evol. Biol. 30, 750–761 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Xavier, J. B., Kim, W. & Foster, K. R. A molecular mechanism that stabilizes cooperative secretions in Pseudomonas aeruginosa. Mol. Microbiol. 79, 166–179 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Kapsetaki, S. E. & West, S. A. The costs and benefits of multicellular group formation in algae. Evolution 73, 1296–1308 (2019).

    Article  PubMed  Google Scholar 

  87. Ratcliff, W. C. et al. Experimental evolution of an alternating uni- and multicellular life cycle in Chlamydomonas reinhardtii. Nat. Commun. 4, 2742 (2013).

    Article  PubMed  Google Scholar 

  88. Ghoul, M., Griffin, A. S. & West, S. A. Toward an evolutionary definition of cheating. Evolution 68, 318–331 (2014).

    Article  PubMed  Google Scholar 

  89. Cordero, O. X., Ventouras, L.-A., DeLong, E. F. & Polz, M. F. Public good dynamics drive evolution of iron acquisition strategies in natural bacterioplankton populations. Proc. Natl Acad. Sci. USA 109, 20059–20064 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Gano-Cohen, K. A. et al. Recurrent mutualism breakdown events in a legume rhizobia metapopulation. Proc. R. Soc. B 287, 20192549 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Andersen, S. B., Marvig, R. L., Molin, S., Krogh Johansen, H. & Griffin, A. S. Long-term social dynamics drive loss of function in pathogenic bacteria. Proc. Natl Acad. Sci. USA 112, 10756–10761 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Sachs, J. L., Ehinger, M. O. & Simms, E. L. Origins of cheating and loss of symbiosis in wild Bradyrhizobium. J. Evol. Biol. 23, 1075–1089 (2010).

    Article  CAS  PubMed  Google Scholar 

  93. Patel, M., Raymond, B., Bonsall, M. B. & West, S. A. Crystal toxins and the volunteer’s dilemma in bacteria. J. Evol. Biol. 32, 310–319 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Gore, J., Youk, H. & van Oudenaarden, A. Snowdrift game dynamics and facultative cheating in yeast. Nature 459, 253–256 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Ross-Gillespie, A., Gardner, A., West, S. A. & Griffin, A. S. Frequency dependence and cooperation: theory and a test with bacteria. Am. Nat. 170, 331–342 (2007).

    Article  PubMed  Google Scholar 

  96. Lujan, A. M., Gomez, P. & Buckling, A. Siderophore cooperation of the bacterium Pseudomonas fluorescens in soil. Biol. Lett. 11, 20140934 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Meir, M. et al. Competition between social cheater viruses is driven by mechanistically different cheating strategies. Sci. Adv. 6, eabb7990 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Van Dyken, J. D., Linksvayer, T. A. & Wade, M. J. Kin selection–mutation balance: a model for the origin, maintenance, and consequences of social cheating. Am. Nat. 177, 288–300 (2011).

    Article  PubMed  Google Scholar 

  99. Jandér, K. C. & Steidinger, B. S. Why mutualist partners vary in quality: mutation-selection balance and incentives to cheat in the fig tree-fig wasp mutualism. Ecol. Lett. 20, 922–932 (2017).

    Article  PubMed  Google Scholar 

  100. Butaitė, E., Baumgartner, M., Wyder, S. & Kümmerli, R. Siderophore cheating and cheating resistance shape competition for iron in soil and freshwater Pseudomonas communities. Nat. Commun. 8, 414 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Kümmerli, R. et al. Co-evolutionary dynamics between public good producers and cheats in the bacterium Pseudomonas aeruginosa. J. Evol. Biol. 28, 2264–2274 (2015).

    Article  PubMed  Google Scholar 

  102. Bruce, J. B., Cooper, G. A., Chabas, H., West, S. A. & Griffin, A. S. Cheating and resistance to cheating in natural populations of the bacterium Pseudomonas fluorescens. Evolution 71, 2484–2495 (2017).

    Article  CAS  PubMed  Google Scholar 

  103. Pollak, S. et al. Facultative cheating supports the coexistence of diverse quorum-sensing alleles. Proc. Natl Acad. Sci. USA 113, 2152–2157 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Even-Tov, E. et al. Social evolution selects for redundancy in bacterial quorum sensing. PLoS Biol. 14, e1002386 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Barker, J. L. & Bronstein, J. L. Temporal structure in cooperative interactions: what does the timing of exploitation tell us about its cost? PLoS Biol. 14, e1002371 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Andersen, S. B. et al. Privatisation rescues function following loss of cooperation. eLife 7, e38594 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Grafen, A. in Behavioural Ecology: An Evolutionary Approach (eds Krebs, J. R. & Davies, N. B.) 62–84 (Wiley–Blackwell, 1984).

  108. Wang, J. et al. A Y-like social chromosome causes alternative colony organization in fire ants. Nature 493, 664–668 (2013).

    Article  CAS  PubMed  Google Scholar 

  109. Avril, A., Purcell, J., Béniguel, S. & Chapuisat, M. Maternal effect killing by a supergene controlling ant social organization. Proc. Natl Acad. Sci. USA 117, 17130–17134 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Yan, Z. et al. Evolution of a supergene that regulates a trans-species social polymorphism. Nat. Ecol. Evol. 4, 240–249 (2020).

    Article  PubMed  Google Scholar 

  111. Fehr, E. & Schurtenberger, I. Normative foundations of human cooperation. Nat. Hum. Behav. 2, 458–468 (2018).

    Article  PubMed  Google Scholar 

  112. Fehr, E. & Fischbacher, U. The nature of human altruism. Nature 425, 785–791 (2003).

    Article  CAS  PubMed  Google Scholar 

  113. Burton-Chellew, M. N., Mouden, El,C. & West, S. A. Conditional cooperation and confusion in public-goods experiments. Proc. Natl Acad. Sci. USA 113, 1291–1296 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Kümmerli, R., Burton-Chellew, M. N., Ross-Gillespie, A. & West, S. A. Resistance to extreme strategies, rather than prosocial preferences, can explain human cooperation in public goods games. Proc. Natl Acad. Sci. USA 107, 10125–10130 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Burton-Chellew, M. N. & West, S. A. Prosocial preferences do not explain human cooperation in public-goods games. Proc. Natl Acad. Sci. USA 110, 216–221 (2013).

    Article  CAS  PubMed  Google Scholar 

  116. Burton-Chellew, M. N., Nax, H. H. & West, S. A. Payoff-based learning explains the decline in cooperation in public goods games. Proc. R. Soc. B 282, 20142678 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Bayer, R.-C., Renner, E. & Sausgruber, R. Confusion and learning in the voluntary contributions game. Exp. Econ. 16, 478–496 (2013).

    Article  Google Scholar 

  118. Barclay, P. Reciprocity creates a stake in one’s partner, or why you should cooperate even when anonymous. Proc. R. Soc. B 287, 20200819 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Jaeggi, A. V., Hooper, P. L., Beheim, B. A., Kaplan, H. & Gurven, M. Reciprocal exchange patterned by market forces helps explain cooperation in a small-scale society. Curr. Biol. 26, 2180–2187 (2016).

    Article  CAS  PubMed  Google Scholar 

  120. Kasper, C. & Mulder, M. B. Who helps and why? Curr. Anthropol. 56, 701–732 (2015).

    Article  Google Scholar 

  121. Guala, F. Reciprocity: weak or strong? What punishment experiments do (and do not) demonstrate. Behav. Brain Sci. 35, 1–15 (2012).

    Article  PubMed  Google Scholar 

  122. Kurzban, R., Burton-Chellew, M. N. & West, S. A. The evolution of altruism in humans. Annu. Rev. Psychol. 66, 575–599 (2015).

    Article  PubMed  Google Scholar 

  123. Lukas, D. & Clutton-Brock, T. H. Social complexity and kinship in animal societies. Ecol. Lett. 21, 1129–1134 (2018).

    Article  PubMed  Google Scholar 

  124. Molleman, L., Quiñones, A. E. & Weissing, F. J. Cultural evolution of cooperation: the interplay between forms of social learning and group selection. Evol. Hum. Behav. 34, 342–349 (2013).

    Article  Google Scholar 

  125. van den Berg, P., Molleman, L. & Weissing, F. J. Focus on the success of others leads to selfish behavior. Proc. Natl Acad. Sci. USA 112, 2912–2917 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Burton-Chellew, M. N., El Mouden, C. & West, S. A. Social learning and the demise of costly cooperation in humans. Proc. R. Soc. B 284, 20170067 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Lehmann, L., Feldman, M. W. & Foster, K. R. Cultural transmission can inhibit the evolution of altruistic helping. Am. Nat. 172, 12–24 (2008).

    Article  PubMed  Google Scholar 

  128. Boyd, R. & Richerson, P. J. Culture and the evolution of human cooperation. Phil. Trans. R. Soc. B 364, 3281–3288 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Clutton-Brock, T. H. Breeding together: kin selection and mutualism in cooperative vertebrates. Science 296, 69–72 (2002).

    Article  CAS  PubMed  Google Scholar 

  130. Gilbert, O. M., Foster, K. R., Mehdiabadi, N. J., Strassmann, J. E. & Queller, D. C. High relatedness maintains multicellular cooperation in a social amoeba by controlling cheater mutants. Proc. Natl Acad. Sci. USA 104, 8913–8917 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Higgs, P. G. & Lehman, N. The RNA world: molecular cooperation at the origins of life. Nat. Rev. Genet. 16, 7–17 (2014).

    Article  PubMed  Google Scholar 

  132. Levin, S. R. & West, S. A. The evolution of cooperation in simple molecular replicators. Proc. R. Soc. B 284, 20171967 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Gardner, A., Alpedrinha, J. A. C. & West, S. A. Haplodiploidy and the evolution of eusociality: split sex ratios. Am. Nat. 179, 240–256 (2012).

    Article  PubMed  Google Scholar 

  134. Alpedrinha, J. A. C., Gardner, A. & West, S. A. Haplodiploidy and the evolution of eusociality: worker revolution. Am. Nat. 184, 303–317 (2014).

    Article  PubMed  Google Scholar 

  135. Rautiala, P., Helantera, H. & Puurtinen, M. Unmatedness promotes the evolution of helping more in diplodiploids than in haplodiploids. Am. Nat. 184, 318–325 (2014).

    Article  PubMed  Google Scholar 

  136. Rautiala, P., Helantera, H. & Puurtinen, M. The evolutionary dynamics of adaptive virginity, sex-allocation, and altruistic helping in haplodiploid animals. Evolution 72, 30–38 (2017).

    Article  PubMed  Google Scholar 

  137. Quiñones, A. E. & Pen, I. A unified model of Hymenopteran preadaptations that trigger the evolutionary transition to eusociality. Nat. Commun. 8, 15920 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Quiñones, A. E., Henriques, G. J. B. & Pen, I. Queen–worker conflict can drive the evolution of social polymorphism and split sex ratios in facultatively eusocial life cycles. Evolution 74, 15–28 (2019).

    Article  PubMed  Google Scholar 

  139. Ross, L., Gardner, A., Hardy, N. & West, S. A. Ecology, not the genetics of sex determination, determines who helps in eusocial populations. Curr. Biol. 23, 2383–2387 (2013).

    Article  CAS  PubMed  Google Scholar 

  140. Ågren, J. A., Davies, N. G. & Foster, K. R. Enforcement is central to the evolution of cooperation. Nat. Ecol. Evol. 3, 1018–1029 (2019).

    Article  PubMed  Google Scholar 

  141. Kokko, H., Johnstone, R. A. & Clutton-Brock, T. H. The evolution of cooperative breeding through group augmentation. Proc. R. Soc. B 268, 187–196 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Axelrod, R. & Hamilton, W. D. The evolution of cooperation. Science 211, 1390–1396 (1981).

    Article  CAS  PubMed  Google Scholar 

  143. Gardner, A. & West, S. A. Cooperation and punishment, especially in humans. Am. Nat. 164, 753–764 (2004).

    Article  PubMed  Google Scholar 

  144. Wenseleers, T. & Ratnieks, F. L. W. Enforced altruism in insect societies. Nature 444, 50 (2006).

    Article  CAS  PubMed  Google Scholar 

  145. Schino, G. Grooming and agonistic support: a meta-analysis of primate reciprocal altruism. Behav. Ecol. 18, 115–120 (2006).

    Article  Google Scholar 

  146. Frank, S. A. Kin selection and virulence in the evolution of protocells and parasites. Proc. R. Soc. B 258, 153–161 (1994).

    Article  CAS  PubMed  Google Scholar 

  147. Leeks, A., Santos dos, M. & West, S. A. Transmission, relatedness, and the evolution of cooperative symbionts. J. Evol. Biol. 32, 1036–1045 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Moran, N. A., McCutcheon, J. P. & Nakabachi, A. Genomics and evolution of heritable bacterial symbionts. Annu. Rev. Genet. 42, 165–190 (2008).

    Article  CAS  PubMed  Google Scholar 

  149. Fisher, R. M., Henry, L. M., Cornwallis, C. K., Kiers, E. T. & West, S. A. The evolution of host–symbiont dependence. Nat. Commun. 8, 15973 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Harcombe, W. Novel cooperation experimentally evolved between species. Evolution 64, 2166–2172 (2010).

    PubMed  Google Scholar 

  151. Harcombe, W. R., Chacón, J. M., Adamowicz, E. M., Chubiz, L. M. & Marx, C. J. Evolution of bidirectional costly mutualism from byproduct consumption. Proc. Natl Acad. Sci. USA 115, 12000–12004 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  152. McCutcheon, J. P. & Moran, N. A. Extreme genome reduction in symbiotic bacteria. Nature 10, 13–26 (2011).

    Google Scholar 

  153. Husnik, F. & McCutcheon, J. P. Functional horizontal gene transfer from bacteria to eukaryotes. Nat. Rev. Microbiol. 16, 67–79 (2017).

    Article  PubMed  Google Scholar 

  154. Frank, S. A. Repression of competition and the evolution of cooperation. Evolution 57, 693–705 (2003).

    PubMed  Google Scholar 

  155. West, S. A., Kiers, E. T., Simms, E. L. & Denison, R. F. Sanctions and mutualism stability: why do rhizobia fix nitrogen? Proc. R. Soc. B 269, 685–694 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Kiers, E. T., Rousseau, R. A., West, S. A. & Denison, R. F. Host sanctions and the legume–rhizobium mutualism. Nature 425, 78–81 (2003).

    Article  CAS  PubMed  Google Scholar 

  157. Jandér, K. C. & Herre, E. A. Host sanctions and pollinator cheating in the fig tree–fig wasp mutualism. Proc. R. Soc. B 277, 1481–1488 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Jandér, K. C., Herre, E. A. & Simms, E. L. Precision of host sanctions in the fig tree–fig wasp mutualism: consequences for uncooperative symbionts. Ecol. Lett. 15, 1362–1369 (2012).

    Article  Google Scholar 

  159. Kiers, E. T. et al. Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science 333, 880–882 (2011).

    Article  CAS  PubMed  Google Scholar 

  160. Whiteside, M. D. et al. Mycorrhizal fungi respond to resource inequality by moving phosphorus from rich to poor patches across networks. Curr. Biol. 29, 2043–2050 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Leigh, E. G. Jr Adaptation and Diversity (Freeman, Cooper & Company, 1971).

  162. Scott, T. W. & West, S. A. Adaptation is maintained by the parliament of genes. Nat. Commun. 10, 5163 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Wyatt, G. A. K., Kiers, E. T., Gardner, A. & West, S. A. A biological market analysis of the plant–mycorrhizal symbiosis. Evolution 68, 2603–2618 (2014).

    Article  PubMed  Google Scholar 

  164. West, S. A., Kiers, E. T., Pen, I. & Denison, R. F. Sanctions and mutualism stability: when should less beneficial mutualists be tolerated? J. Evol. Biol. 15, 830–837 (2002).

    Article  Google Scholar 

  165. West, S. A., Diggle, S. P., Buckling, A., Gardner, A. & Griffin, A. S. The social lives of microbes. Annu. Rev. Ecol. Evol. Syst. 38, 53–77 (2007).

    Article  Google Scholar 

  166. Rumbaugh, K. P. et al. Quorum sensing and the social evolution of bacterial virulence. Curr. Biol. 19, 341–345 (2009).

    Article  CAS  PubMed  Google Scholar 

  167. Vasilijevic, J. et al. Reduced accumulation of defective viral genomes contributes to severe outcome in influenza virus infected patients. PLoS Pathog. 13, e1006650 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Tanner, E. J., Kirkegaard, K. A. & Weinberger, L. S. Exploiting genetic interference for antiviral therapy. PLoS Genet. 12, e1005986 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Brown, S. P., West, S. A., Diggle, S. P. & Griffin, A. S. Social evolution in micro-organisms and a Trojan horse approach to medical intervention strategies. Phil. Trans. R. Soc. B 364, 3157–3168 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Andre, J.-B. & Letters, B. G. E. Multicellular organization in bacteria as a target for drug therapy. Ecol. Lett. 85, 800–810 (2005).

    Article  Google Scholar 

  171. Dieltjens, L. et al. Inhibiting bacterial cooperation is an evolutionarily robust anti-biofilm strategy. Nat. Commun. 11, 107 (2019).

    Article  Google Scholar 

  172. Rahwan, I. et al. Machine behaviour. Nature 568, 477–486 (2019).

    Article  CAS  PubMed  Google Scholar 

  173. Crandall, J. W. et al. Cooperating with machines. Nat. Commun. 9, 233 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Hesse, E. et al. Ecological selection of siderophore-producing microbial taxa in response to heavy metal contamination. Ecol. Lett. 21, 117–127 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Nikel, P. I., Silva-Rocha, R., Benedetti, I. & de Lorenzo, V. The private life of environmental bacteria: pollutant biodegradation at the single cell level. Environ. Microbiol. 16, 628–642 (2014).

    Article  CAS  PubMed  Google Scholar 

  176. Nowak, M. A., Tarnita, C. E. & Wilson, E. O. The evolution of eusociality. Nature 466, 1057–1062 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Nowak, M. A., McAvoy, A., Allen, B. & Wilson, E. O. The general form of Hamilton’s rule makes no predictions and cannot be tested empirically. Proc. Natl Acad. Sci. USA 114, 5665–5670 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Nowak, M. A. & Allen, B. Inclusive fitness theorizing invokes phenomena that are not relevant for the evolution of eusociality. PLoS Biol. 13, e1002134 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Welch, J. J. What’s wrong with evolutionary biology? Biol. Philos. 32, 263–279 (2017).

    Article  PubMed  Google Scholar 

  180. Grafen, A. A geometric view of relatedness. Oxf. Surv. Evol. Biol. 2, 28–89 (1985).

    Google Scholar 

  181. Abbot, P. et al. Inclusive fitness theory and eusociality. Nature 471, E1–E4 (2011).

    Article  CAS  PubMed  Google Scholar 

  182. Parker, G. A. & Maynard Smith, J. Optimality theory in evolutionary biology. Nature 348, 27–33 (1990).

    Article  Google Scholar 

  183. Davies, N. B., Krebs, J. R. & West, S. A. An Introduction to Behavioural Ecology 4th Edn (Wiley–Blackwell, 2012).

  184. Foster, K. R., Shaulsky, G., Strassmann, J. E. & Queller, D. C. Pleiotropy as a mechanism to stabilize cooperation. Nature 431, 693–696 (2004).

    Article  CAS  PubMed  Google Scholar 

  185. Mitri, S. & Foster, K. R. Pleiotropy and the low cost of individual traits promote cooperation. Evolution 70, 488–494 (2016).

    Article  PubMed  Google Scholar 

  186. Wang, M., Schaefer, A. L., Dandekar, A. A. & Greenberg, E. P. Quorum sensing and policing of Pseudomonas aeruginosa social cheaters. Proc. Natl Acad. Sci. USA 112, 2187–2191 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Dandekar, A. A. & Chugani, S. Bacterial quorum sensing and metabolic incentives to cooperate. Science 338, 264–266 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Majerczyk, C. & Schneider, E. Quorum sensing control of Type VI secretion factors restricts the proliferation of quorum-sensing mutants. eLife 5, e14712 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Frénoy, A., Taddei, F. & Misevic, D. Genetic architecture promotes the evolution and maintenance of cooperation. PLoS Comput. Biol. 9, e1003339 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  190. Özkaya, Ö., Xavier, K. B., Dionisio, F. & Balbontín, R. Maintenance of microbial cooperation mediated by public goods in single and multiple traits scenarios. J. Bacteriol. 199, e00297 (2017).

    Article  PubMed Central  Google Scholar 

  191. Oliveira, R. C. et al. Hormonal pleiotropy helps maintain queen signal honesty in a highly eusocial wasp. Sci. Rep. 7, 1654 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  192. Santos dos, M., Ghoul, M. & West, S. A. Pleiotropy, cooperation, and the social evolution of genetic architecture. PLoS Biol. 16, e2006671 (2018).

    Article  Google Scholar 

  193. Bruger, E. & Waters, C. Sharing the sandbox: evolutionary mechanisms that maintain bacterial cooperation. F1000Res 4, 1504 (2015).

    Article  Google Scholar 

  194. Waite, A. J. & Shou, W. Adaptation to a new environment allows cooperators to purge cheaters stochastically. Proc. Natl Acad. Sci. USA 109, 19079–19086 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Morgan, A. D., Quigley, B. J. Z., Brown, S. P. & Buckling, A. Selection on non-social traits limits the invasion of social cheats. Ecol. Lett. 15, 841–846 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  196. Queller, D. C., Ponte, E., Bozzaro, S. & Strassmann, J. E. Single-gene greenbeard effects in the social amoeba Dictyostelium discoideum. Science 299, 105–106 (2003).

    Article  CAS  PubMed  Google Scholar 

  197. Smukalla, S. et al. FLO1 is a variable green beard gene that drives biofilm-like cooperation in budding yeast. Cell 135, 726–737 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Madgwick, P. G., Belcher, L. J. & Wolf, J. B. Greenbeard genes: theory and reality. Trends Ecol. Evol. 34, 1092–1103 (2019).

    Article  PubMed  Google Scholar 

  199. West, S. A. & Gardner, A. Greenbeards. Evolution 64, 25–38 (2010).

    Article  PubMed  Google Scholar 

  200. Smith, J. The social evolution of bacterial pathogenesis. Proc. R. Soc. B 268, 61–69 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Nogueira, T. et al. Horizontal gene transfer of the secretome drives the evolution of bacterial cooperation and virulence. Curr. Biol. 19, 1683–1691 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. McGinty, S. E., Lehmann, L., Brown, S. P. & Rankin, D. J. The interplay between relatedness and horizontal gene transfer drives the evolution of plasmid-carried public goods. Proc. R. Soc. B 280, 20130400 (2013).

    Article  Google Scholar 

  203. McGinty, S. E., Rankin, D. J. & Brown, S. P. Horizontal gene transfer and the evolution of bacterial cooperation. Evolution 65, 21–32 (2010).

    Article  Google Scholar 

  204. Ghoul, M., Andersen, S. B. & West, S. A. Sociomics: using omic approaches to understand social evolution. Trends Genet. 33, 408–419 (2017).

    Article  CAS  PubMed  Google Scholar 

  205. Hanschen, E. R., Ferris, P. J. & Michod, R. E. Early evolution of the genetic basis for soma in the Volvocaceae. Evolution 68, 2014–2025 (2014).

    Article  CAS  PubMed  Google Scholar 

  206. Smith, S. M., Kent, D. S., Boomsma, J. J. & Stow, A. J. Monogamous sperm storage and permanent worker sterility in a long-lived ambrosia beetle. Nat. Ecol. Evol. 48, 1009–1018 (2018).

    Article  Google Scholar 

  207. Cuevas, J. M., Durán-Moreno, M. & Sanjuán, R. Multi-virion infectious units arise from free viral particles in an enveloped virus. Nat. Microbiol. 2, 17078 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Hamilton, W. D. Altruism and related phenomena, mainly in social insects. Annu. Rev. Ecol. Syst. 3, 193–232 (1972).

    Article  Google Scholar 

  209. Kiers, E. T., Ratcliff, W. C. & Denison, R. F. Single-strain inoculation may create spurious correlations between legume fitness and rhizobial fitness. New Phytol. 198, 4–9 (2013).

    Article  PubMed  Google Scholar 

  210. Hamilton, W. D. Evolution of altruistic behavior. Am. Nat. 97, 354–356 (1963).

    Article  Google Scholar 

  211. West, S. A. & Gardner, A. Adaptation and inclusive fitness review. Curr. Biol. 23, R577–R584 (2013).

    Article  CAS  PubMed  Google Scholar 

  212. Taylor, P. D. & Frank, S. A. How to make a kin selection model. J. Theor. Biol. 180, 27–37 (1996).

    Article  CAS  PubMed  Google Scholar 

  213. Grafen, A. Optimization of inclusive fitness. J. Theor. Biol. 238, 541–563 (2006).

    Article  PubMed  Google Scholar 

  214. Trivers, R. & Hope, H. Haplodiploidy and the evolution of the social insects. Science 191, 249–263 (1976).

    Article  CAS  PubMed  Google Scholar 

  215. Chai, Y., Chu, F., Kolter, R. & Losick, R. Bistability and biofilm formation in Bacillus subtilis. Mol. Microbiol. 67, 254–263 (2008).

    Article  CAS  PubMed  Google Scholar 

  216. Crozier, R. H. Genetic clonal recognition abilities in marine invertebrates must be maintained by selection for something else. Evolution 40, 1100–1101 (1986).

    Article  CAS  PubMed  Google Scholar 

  217. Moran, N. A. & Sloan, D. B. The hologenome concept: helpful or hollow? PLoS Biol. 13, e1002311 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  218. Foster, K. R., Schluter, J., Coyte, K. Z. & Rakoff-Nahoum, S. The evolution of the host microbiome as an ecosystem on a leash. Nature 548, 43–51 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Werner, G. D. A. et al. Symbiont switching and alternative resource acquisition strategies drive mutualism breakdown. Proc. Natl Acad. Sci. USA 115, 5229–5234 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Maynard Smith, J. & Szathmáry, E. The Major Transitions in Evolution (Oxford Univ. Press, 1995).

  221. West, S. A., Fisher, R. M., Gardner, A. & Kiers, E. T. Major evolutionary transitions in individuality. Proc. Natl Acad. Sci. USA 112, 10112–10119 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the social evolution journal club for comments; K. Boomsma for a sentence that was very useful in our conclusion; the ERC (A.S.G., M.B.G. and S.A.W.) and St John’s College (G.A.C.) for funding; and P. Biedermann, A. MacColl and R. Sanjuán for supplying photos.

Author information

Authors and Affiliations

Authors

Contributions

All authors conceived and wrote the manuscript. G.A.C. and M.B.G. constructed the figures.

Corresponding author

Correspondence to Stuart A. West.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Ecology & Evolution thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1 and 2.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

West, S.A., Cooper, G.A., Ghoul, M.B. et al. Ten recent insights for our understanding of cooperation. Nat Ecol Evol 5, 419–430 (2021). https://doi.org/10.1038/s41559-020-01384-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-020-01384-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing