Biogeography of marine giant viruses reveals their interplay with eukaryotes and ecological functions

Abstract

Nucleocytoplasmic large DNA viruses (NCLDVs) are ubiquitous in marine environments and infect diverse eukaryotes. However, little is known about their biogeography and ecology in the ocean. By leveraging the Tara Oceans pole-to-pole metagenomic data set, we investigated the distribution of NCLDVs across size fractions, depths and biomes, as well as their associations with eukaryotic communities. Our analyses reveal a heterogeneous distribution of NCLDVs across oceans, and a higher proportion of unique NCLDVs in the polar biomes. The community structures of NCLDV families correlate with specific eukaryotic lineages, including many photosynthetic groups. NCLDV communities are generally distinct between surface and mesopelagic zones, but at some locations they exhibit a high similarity between the two depths. This vertical similarity correlates to surface phytoplankton biomass but not to physical mixing processes, which suggests a potential role of vertical transport in structuring mesopelagic NCLDV communities. These results underscore the importance of the interactions between NCLDVs and eukaryotes in biogeochemical processes in the ocean.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Latitudinal patterns in NCLDV community composition.
Fig. 2: Community characteristics of NCLDVs.
Fig. 3: Structural differentiation of NCLDV communities across ecological zones.
Fig. 4: Phylogenetic affiliations of environmental NCLDVs and their dispersal characteristics.
Fig. 5: Associations between NCLDVs and eukaryotic communities.
Fig. 6: Vertical linkage of NCLDV communities between the surface and mesopelagic layers.

Data availability

The complete sequence data of the OM-RGC.v2 and the abundance profile can be downloaded from https://www.ocean-microbiome.org. All sequences of 18S rRNA gene metabarcoding have been deposited at the European Nucleotide Archive (ENA) under the BioProject IDs PRJEB6610 and PRJEB9737. Environmental metadata are archived at https://doi.org/10.1594/PANGAEA.875582. Files used for recruiting NCLDV PolB genes as well as processed abundance profiles of eukaryotes and NCLDVs with corresponding environmental data are available at the GenomeNet FTP (ftp://ftp.genome.jp/pub/db/community/tara/Biogeography/).

Code availability

Custom scripts developed for this study are available at GitHub (https://github.com/HisashiENDO/NCLDV_Biogeography).

References

  1. 1.

    Field, C. B., Behrenfeld, M. J., Randerson, J. T. & Falkowski, P. Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281, 237–240 (1998).

    CAS  PubMed  Google Scholar 

  2. 2.

    Worden, A. Z. et al. Environmental science. Rethinking the marine carbon cycle: factoring in the multifarious lifestyles of microbes. Science 347, 1257594 (2015).

    PubMed  Google Scholar 

  3. 3.

    Brum, J. R. & Sullivan, M. B. Rising to the challenge: accelerated pace of discovery transforms marine virology. Nat. Rev. Microbiol. 13, 147–159 (2015).

    CAS  PubMed  Google Scholar 

  4. 4.

    Selosse, M.-A., Charpin, M. & Not, F. Mixotrophy everywhere on land and in water: the grand écart hypothesis. Ecol. Lett. 20, 246–263 (2017).

    PubMed  Google Scholar 

  5. 5.

    Weitz, J. S. et al. A multitrophic model to quantify the effects of marine viruses on microbial food webs and ecosystem processes. ISME J. 9, 1352–1364 (2015).

    PubMed  PubMed Central  Google Scholar 

  6. 6.

    Mojica, K. D., Huisman, J., Wilhelm, S. W. & Brussaard, C. P. Latitudinal variation in virus-induced mortality of phytoplankton across the North Atlantic Ocean. ISME J. 10, 500–513 (2016).

    CAS  PubMed  Google Scholar 

  7. 7.

    Suttle, C. A. Marine viruses–major players in the global ecosystem. Nat. Rev. Microbiol. 5, 801–812 (2007).

    CAS  PubMed  Google Scholar 

  8. 8.

    Guidi, L. et al. Plankton networks driving carbon export in the oligotrophic ocean. Nature 532, 465–470 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Laber, C. P. et al. Coccolithovirus facilitation of carbon export in the North Atlantic. Nat. Microbiol. 3, 537–547 (2018).

    CAS  PubMed  Google Scholar 

  10. 10.

    Colson, P. et al. “Megavirales”, a proposed new order for eukaryotic nucleocytoplasmic large DNA viruses. Arch. Virol. 158, 2517–2521 (2013).

    PubMed  PubMed Central  Google Scholar 

  11. 11.

    Fischer, M. G. Giant viruses come of age. Curr. Opin. Microbiol. 31, 50–57 (2016).

    PubMed  Google Scholar 

  12. 12.

    Koonin, E. V. & Yutin, N. Evolution of the large nucleocytoplasmic DNA viruses of eukaryotes and convergent origins of viral gigantism. Adv. Virus Res. 103, 167–202 (2019).

    PubMed  Google Scholar 

  13. 13.

    Monier, A., Claverie, J. M. & Ogata, H. Taxonomic distribution of large DNA viruses in the sea. Genome Biol. 9, R106 (2008).

    PubMed  PubMed Central  Google Scholar 

  14. 14.

    Hingamp, P. et al. Exploring nucleo-cytoplasmic large DNA viruses in Tara Oceans microbial metagenomes. ISME J. 7, 1678–1695 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Clerissi, C. et al. Deep sequencing of amplified Prasinovirus and host green algal genes from an Indian Ocean transect reveals interacting trophic dependencies and new genotypes. Environ. Microbiol. Rep. 7, 979–989 (2015).

    CAS  PubMed  Google Scholar 

  16. 16.

    Li, Y. et al. The earth is small for “Leviathans”: long distance dispersal of giant viruses across aquatic environments. Microbes Environ. 34, 334–339 (2019).

    PubMed  PubMed Central  Google Scholar 

  17. 17.

    Mihara, T. et al. Taxon richness of “Megaviridae” exceeds those of bacteria and archaea in the ocean. Microbes Environ. 33, 162–171 (2018).

    PubMed  PubMed Central  Google Scholar 

  18. 18.

    Li, Y. et al. Degenerate PCR primers to reveal the diversity of giant viruses in coastal waters. Viruses 10, 496 (2018).

    PubMed Central  Google Scholar 

  19. 19.

    Schulz, F. et al. Giant virus diversity and host interactions through global metagenomics. Nature 578, 432–436 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Moniruzzaman, M., Martinez-Gutierrez, C. A., Weinheimer, A. R. & Aylward, F. O. Dynamic genome evolution and complex virocell metabolism of globally-distributed giant viruses. Nat. Commun. 11, 1710 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Cottrell, M. T. & Suttle, C. A. Wide-spread occurrence and clonal variation in viruses which cause lysis of a cosmopolitan, eukaryotic marine phytoplankter, Micromonas pusilla. Mar. Ecol. Prog. Ser. 78, 1–9 (1991).

  22. 22.

    Bratbak, G., Egge, J. K. & Heldal, M. Viral mortality of the marine alga Emiliania huxleyi (Haptophyceae) and termination of algal blooms. Mar. Ecol. Prog. Ser. 93, 39–48 (1993).

    Google Scholar 

  23. 23.

    Kenji, T., Keizo, N., Shigeru, I. & Mineo, Y. Isolation of a virus infecting the novel shellfish-killing dinoflagellate Heterocapsa circularisquama. Aquat. Microb. Ecol. 23, 103–111 (2001).

    Google Scholar 

  24. 24.

    Fischer, M. G., Allen, M. J., Wilson, W. H. & Suttle, C. A. Giant virus with a remarkable complement of genes infects marine zooplankton. Proc. Natl Acad. Sci. USA 107, 19508–19513 (2010).

    CAS  PubMed  Google Scholar 

  25. 25.

    Needham, D. M. et al. A distinct lineage of giant viruses brings a rhodopsin photosystem to unicellular marine predators. Proc. Natl Acad. Sci. USA 116, 20574–20583 (2019).

    CAS  PubMed  Google Scholar 

  26. 26.

    Pesant, S. et al. Open science resources for the discovery and analysis of Tara Oceans data. Sci. Data 2, 150023 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Gregory, A. C. et al. Marine DNA viral macro- and microdiversity from pole to pole. Cell 177, e1114 (2019).

    Google Scholar 

  28. 28.

    Salazar, G. et al. Gene expression changes and community turnover differentially shape the global ocean metatranscriptome. Cell 179, e1021 (2019).

    Google Scholar 

  29. 29.

    Matsen, F. A., Kodner, R. B. & Armbrust, E. V. pplacer: linear time maximum-likelihood and Bayesian phylogenetic placement of sequences onto a fixed reference tree. BMC Bioinform. 11, 538 (2010).

    Google Scholar 

  30. 30.

    Gallot-Lavallee, L., Blanc, G. & Claverie, J. M. Comparative genomics of Chrysochromulina ericina virus and other microalga-infecting large DNA viruses highlights their intricate evolutionary relationship with the established Mimiviridae family. J. Virol. 91, e00230–17 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Ibarbalz, F. M. et al. Global trends in marine plankton diversity across kingdoms of life. Cell 179, e1021 (2019).

    Google Scholar 

  32. 32.

    Mihara, T. et al. Linking virus genomes with host taxonomy. Viruses 8, 66 (2016).

    PubMed  PubMed Central  Google Scholar 

  33. 33.

    Ogata, H. et al. Remarkable sequence similarity between the dinoflagellate-infecting marine girus and the terrestrial pathogen African swine fever virus. Virol. J. 6, 178 (2009).

    PubMed  PubMed Central  Google Scholar 

  34. 34.

    Andreani, J. et al. Pacmanvirus, a new giant icosahedral virus at the crossroads between Asfarviridae and Faustoviruses. J. Virol. 91, e00212–e00217 (2017).

    PubMed  PubMed Central  Google Scholar 

  35. 35.

    Barton, A. D., Dutkiewicz, S., Flierl, G., Bragg, J. & Follows, M. J. Patterns of diversity in marine phytoplankton. Science 327, 1509–1511 (2010).

    CAS  PubMed  Google Scholar 

  36. 36.

    Lima-Mendez, G. et al. Ocean plankton. Determinants of community structure in the global plankton interactome. Science 348, 1262073 (2015).

    PubMed  Google Scholar 

  37. 37.

    Zhou, J. & Ning, D. Stochastic community assembly: does it matter in microbial ecology? Microbiol. Mol. Biol. Rev. 81, e00002–e00017 (2017).

    PubMed  PubMed Central  Google Scholar 

  38. 38.

    Chow, C. E. & Suttle, C. A. Biogeography of viruses in the sea. Annu Rev. Virol. 2, 41–66 (2015).

    CAS  PubMed  Google Scholar 

  39. 39.

    Yoshida, T. et al. Locality and diel cycling of viral production revealed by a 24 h time course cross-omics analysis in a coastal region of Japan. ISME J. 12, 1287–1295 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Sunagawa, S. et al. Ocean plankton. Structure and function of the global ocean microbiome. Science 348, 1261359 (2015).

    Google Scholar 

  41. 41.

    Syed, T. H., Famiglietti, J. S., Zlotnicki, V. & Rodell, M. Contemporary estimates of Pan-Arctic freshwater discharge from GRACE and reanalysis. Geophys. Res. Lett. 34, L19404 (2007).

    Google Scholar 

  42. 42.

    Wommack, K. E. & Colwell, R. R. Virioplankton: viruses in aquatic ecosystems. Microbiol. Mol. Biol. Rev. 64, 69–114 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Bellec, L. et al. Cophylogenetic interactions between marine viruses and eukaryotic picophytoplankton. BMC Evol. Biol. 14, 59 (2014).

    PubMed  PubMed Central  Google Scholar 

  44. 44.

    Brussaard, C. P. D., Kempers, R. S., Kop, A. J., Riegman, R. & Heldal, M. Virus-like particles in a summer bloom of Emiliania huxleyi in the North Sea. Aquat. Microb. Ecol. 10, 105–113 (1996).

    Google Scholar 

  45. 45.

    Stephan, J. et al. Flow cytometric analysis of an Emiliana huxleyi bloom terminated by viral infection. Aquat. Microb. Ecol. 27, 111–124 (2002).

    Google Scholar 

  46. 46.

    Hurwitz, B. L., Westveld, A. H., Brum, J. R. & Sullivan, M. B. Modeling ecological drivers in marine viral communities using comparative metagenomics and network analyses. Proc. Natl Acad. Sci. USA 111, 10714–10719 (2014).

    CAS  PubMed  Google Scholar 

  47. 47.

    Herndl, G. J. & Reinthaler, T. Microbial control of the dark end of the biological pump. Nat. Geosci. 6, 718–724 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Giering, S. L. et al. Reconciliation of the carbon budget in the ocean’s twilight zone. Nature 507, 480–483 (2014).

    CAS  PubMed  Google Scholar 

  49. 49.

    Boyd, P. W., Claustre, H., Levy, M., Siegel, D. A. & Weber, T. Multi-faceted particle pumps drive carbon sequestration in the ocean. Nature 568, 327–335 (2019).

    CAS  PubMed  Google Scholar 

  50. 50.

    Janice, E. L. & Curtis, A. S. Effect of viral infection on sinking rates of Heterosigma akashiwo and its implications for bloom termination. Aquat. Microb. Ecol. 37, 1–7 (2004).

    Google Scholar 

  51. 51.

    Close, H. G. et al. Export of submicron particulate organic matter to mesopelagic depth in an oligotrophic gyre. Proc. Natl Acad. Sci. USA 110, 12565–12570 (2013).

    CAS  PubMed  Google Scholar 

  52. 52.

    Mestre, M. et al. Sinking particles promote vertical connectivity in the ocean microbiome. Proc. Natl Acad. Sci. USA 115, E6799–E6807 (2018).

    CAS  PubMed  Google Scholar 

  53. 53.

    Hurwitz, B. L., Brum, J. R. & Sullivan, M. B. Depth-stratified functional and taxonomic niche specialization in the ‘core’ and ‘flexible’ Pacific Ocean Virome. ISME J. 9, 472–484 (2015).

    CAS  PubMed  Google Scholar 

  54. 54.

    Sancetta, C., Villareal, T. & Falkowski, P. Massive fluxes of rhizosolenid diatoms: a common occurrence? Limnol. Oceanogr. 36, 1452–1457 (1991).

    Google Scholar 

  55. 55.

    Kawakami, H. & Honda, M. C. Time-series observation of POC fluxes estimated from 234Th in the northwestern North Pacific. Deep Sea Res. I 54, 1070–1090 (2007).

    Google Scholar 

  56. 56.

    Richardson, T. L. & Jackson, G. A. Small phytoplankton and carbon export from the surface ocean. Science 315, 838–840 (2007).

    CAS  PubMed  Google Scholar 

  57. 57.

    Blanc-Mathieu, R. et al. Viruses of the eukaryotic plankton are predicted to increase carbon export efficiency in the global sunlit ocean. Preprint at bioRxiv https://doi.org/10.1101/710228 (2019).

  58. 58.

    Iversen, M. H. & Ploug, H. Ballast minerals and the sinking carbon flux in the ocean: carbon-specific respiration rates and sinking velocity of marine snow aggregates. Biogeosciences 7, 2613–2624 (2010).

    CAS  Google Scholar 

  59. 59.

    Alberti, A. et al. Viral to metazoan marine plankton nucleotide sequences from the Tara Oceans expedition. Sci. Data 4, 170093 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Eddy, S. R. Profile hidden Markov models. Bioinformatics 14, 755–763 (1998).

    CAS  PubMed  Google Scholar 

  61. 61.

    Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. 62.

    Stamatakis, A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 2688–2690 (2006).

    CAS  PubMed  Google Scholar 

  63. 63.

    Koonin, E. V. & Yutin, N. Multiple evolutionary origins of giant viruses. F1000Res. 7, 1840 (2018).

  64. 64.

    Yoshikawa, G. et al. Medusavirus, a novel large DNA virus discovered from hot spring water. J. Virol. 93, e02130–18 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. 65.

    Longhurst, A. R. in Ecological Geography of the Sea 2nd edn (ed. Longhurst, A. R.) Ch. 6 (Academic Press, 2007).

  66. 66.

    Letunic, I. & Bork, P. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res. 44, W242–W245 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. 67.

    Besemer, J., Lomsadze, A. & Borodovsky, M. GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucleic Acids Res. 29, 2607–2618 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. 68.

    Keeling, P. J. et al. The Marine Microbial Eukaryote Transcriptome Sequencing Project (MMETSP): illuminating the functional diversity of eukaryotic life in the oceans through transcriptome sequencing. PLoS Biol. 12, e1001889 (2014).

    PubMed  PubMed Central  Google Scholar 

  69. 69.

    Jain, C., Rodriguez, R. L., Phillippy, A. M., Konstantinidis, K. T. & Aluru, S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat. Commun. 9, 5114 (2018).

    PubMed  PubMed Central  Google Scholar 

  70. 70.

    Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral. Ecol. 26, 32–46 (2001).

    Google Scholar 

  71. 71.

    de Vargas, C. et al. Ocean plankton. Eukaryotic plankton diversity in the sunlit ocean. Science 348, 1261605 (2015).

    PubMed  Google Scholar 

  72. 72.

    Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B 57, 289–300 (1995).

    Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS/KAKENHI (nos. 26430184, 18H02279 and 19H05667 to H.O. and nos. 19K15895 and 19H04263 to H.E.); Scientific Research on Innovative Areas from the Ministry of Education, Culture, Science, Sports and Technology (MEXT) of Japan (numbers 16H06429, 16K21723 and 16H06437 to H.O.); Kyoto University Research Coordination Alliance (funding to H.E.); and the Collaborative Research Program of the Institute for Chemical Research, Kyoto University (numbers 2019–30 and 2020–27). Computational time was provided by the SuperComputer System, Institute for Chemical Research, Kyoto University. We further thank the Tara Oceans consortium, the projects OCEANOMICS (ANR-11-BTBR-0008) and France Génomique (ANR-10-INBS-09), and the people and sponsors who supported Tara Oceans. Tara Oceans (including both the Tara Oceans and Tara Oceans Polar Circle expeditions) would not exist without the leadership of the Tara Expeditions Foundation and the continuous support of 23 institutes (https://oceans.taraexpeditions.org). This article is contribution number 108 of Tara Oceans.

Author information

Affiliations

Authors

Contributions

H.E. and H.O. designed the study. H.E. performed most of the bioinformatics analysis. R.B.-M. and Y.L. contributed to the bioinformatics analysis. G.S., N.H., K.L., C.d.V., M.B.S., C.B., P.W., L.K.-B. and S.S. contributed to the generation of primary data. C.d.V., M.B.S., C.B., P.W., L.K.-B., S.S. and H.O. coordinated Tara Oceans. All authors contributed to the writing of the manuscript.

Corresponding author

Correspondence to Hiroyuki Ogata.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Peer reviewer reports are available.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Sample-size dependence of the observed NCLDVs.

Sample-based rarefaction curves showing accumulated richness of NCLDV polB genes detected in different a, size fractions, b, depths and c, biomes. Error bars indicate ±1 standard deviation.

Extended Data Fig. 2 Phylogenetic affiliations of environmental NCLDVs.

Phylogenetic tree constructed from 905 long (≥700 amino acid) PolB sequences from the OM-RGC.v2 and 67 known NCLDV sequences. Branches of Mimiviridae and Phycodnaviridae were collapsed in the tree. Known sequences and the environmental gene sequences were colour-coded according to family-level classification.

Extended Data Fig. 3 Phylogenetic affiliations of environmental Phycodnaviridae.

Phylogenetic tree constructed from 905 long (≥700 amino acid) PolB sequences from the OM-RGC.v2 and the 67 known NCLDV sequences. Branches other than Phycodnaviridae were collapsed in the tree. Known sequences and the environmental gene sequences were colour-coded according to family-level classification. Blue branches indicate phylotypes closely related (>90% amino acid identity) to those of NCLDV MAGs having chrysophyte homologues.

Extended Data Fig. 4 Phylogenetic affiliations of environmental Mimiviridae.

Phylogenetic tree constructed from 905 long (≥700 amino acid) PolB sequences from the OM-RGC.v2 and the 67 known NCLDV sequences. Branches other than Mimiviridae were collapsed in the tree. Known sequences and the environmental gene sequences were colour-coded according to the family-level classification. Blue branches indicate phylotypes closely related (>90% amino acid identity) to those of NCLDV MAGs having chrysophyte homologues.

Extended Data Fig. 5 Latitudinal patterns in NCLDV diversity from pole to pole.

Latitudinal variations in richness and Shannon’s diversity index at each depth for a, pico- and b, femto-size fractions (left panels). Box plots are shown (right panels) to summarize variation in richness and Shannon’s index across sampling depths (centre line, median; box limits, 25%–75% quantiles; whiskers, 1.5× interquartile range). Shaded areas represent 90% confidence intervals.

Extended Data Fig. 6 Number and taxonomic composition of genes predicted in NCLDV contigs encoding chrysophyte homologues.

Most of the NCLDV MAGs having chrysophyte homologues were phylogenetically assigned to the Mimiviridae by using PolB genes in the MAGs (Extended Data Fig. 4). The two exceptions, which were closely related to Phycodnaviridae (Extended Data Fig. 3), are shown with an asterisk (*) in the figure.

Extended Data Fig. 7 Vertical linkage of NCLDV communities between the DCM and mesopelagic layers.

a, Latitudinal trend in NCLDV community similarity between two depths (with the station numbers). b-f, NCLDV vertical community similarity is plotted against the surface chlorophyll a biomass (b), NCLDV richness in the mesopelagic layer (c), sampling depth of mesopelagic seawater (d), the mixed layer depth (e) and temperature difference between epipelagic and mesopelagic samples (f). NCLDV data were derived from the pico-size fraction. Shaded areas represent 90% confidence intervals.

Extended Data Fig. 8 Comparisons of relative frequencies in NCLDV phylotypes between the surface and mesopelagic layers.

Station number and the Bray-Curtis similarities between two depths are indicated above each plot. Samples are presented in ascending order of the similarity. Each dot is colour-coded according to family-level classification.

Extended Data Fig. 9 Comparisons of relative frequencies in NCLDV phylotypes between the DCM and mesopelagic layers.

Station number and the Bray-Curtis similarities between two depths are indicated above each plot. Samples are presented in ascending order of the similarity. Each dot is colour-coded according to family-level classification.

Extended Data Fig. 10 Effects of per-sample abundance of total NCLDV gene on the diversity estimates.

Relationships between length-normalized PolB gene abundance of NCLDVs and a, the number of phylotypes, and b, Shannon’s index in the unprocessed (raw) samples. Samples containing >2,000 length-normalized read counts of PolBs were not shown in the figures. Shaded areas represent 90% confidence intervals.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Endo, H., Blanc-Mathieu, R., Li, Y. et al. Biogeography of marine giant viruses reveals their interplay with eukaryotes and ecological functions. Nat Ecol Evol (2020). https://doi.org/10.1038/s41559-020-01288-w

Download citation

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing