Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Net positive outcomes for nature

Much research and policy effort is being expended on ways to conserve living nature while enabling the economic and social development needed to increase equity and end poverty. We propose this will only be possible if policy shifts away from conservation targets that focus on avoiding losses towards processes that consider net outcomes for biodiversity.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Paraphrased key content of the Aichi Biodiversity Targets, valid until 2020, alongside some possible variations that would shift the focus towards net conservation outcomes.

Aichi Biodiversity Targets icons, copyright BIP/SCBD

Similar content being viewed by others


  1. World Conservation Strategy (International Union for the Conservation of Nature, World Wildlife Fund and United Nations Environment Programme, 1980);

  2. Sharm El-Sheik Declaration: Investing in Biodiversity for People and Planet CBD/COP/14/12 (UNEP, 2018);

  3. Collins, A. et al. The Global Risks Report 2019 (World Economic Forum, 2019);

  4. Maxwell, S. L. et al. Science 347, 1075–1076 (2015).

    Article  CAS  Google Scholar 

  5. Maron, M., Simmonds, J. S. & Watson, J. E. M. Nat. Ecol. Evol. 2, 1194–1195 (2018).

    Article  Google Scholar 

  6. Renwick, A. R. et al. PLoS ONE 12, e0173876 (2017).

    Article  Google Scholar 

  7. Kremen, C. & Merenlender, A. M. Science 362, eaau6020 (2018).

    Article  Google Scholar 

  8. Turner, W. R. et al. BioScience 62, 85–92 (2012).

    Article  Google Scholar 

  9. Arlidge, W. N. S. et al. BioScience 68, 336–347 (2018).

    Article  Google Scholar 

  10. Pilgrim, J. D. et al. Conserv. Lett. 6, 376–384 (2013).

    Google Scholar 

  11. Kiesecker, J. M., Copeland, H., Pocewicz, A. & McKenney, B. Front. Ecol. Environ. 8, 261–266 (2009).

    Article  Google Scholar 

  12. Visconti, P. et al. Science 364, 239–241 (2019).

    CAS  PubMed  Google Scholar 

  13. Maron, M. et al. Nat. Sustain. 1, 19–27 (2018).

    Article  Google Scholar 

  14. Bull, J. W., Suttle, K. B., Gordon, A., Singh, N. J. & Milner-Gulland, E. J. Oryx 47, 369–380 (2013).

    Article  Google Scholar 

  15. Bull, J. W. & Strange, N. Nat. Sustain. 1, 790–798 (2018).

    Article  Google Scholar 

  16. Global Inventory of Biodiversity Offset Projects (IUCN, 2019);

  17. IUCN Policy on Biodiversity Offsets (IUCN, 2016);

  18. Akçakaya, H. R. et al. Conserv. Biol. 32, 1128–1138 (2018).

    Article  Google Scholar 

  19. Bull, J. W. & Maron, M . Proc. R. Soc. B 283, 20160600 (2016).

    Article  Google Scholar 

  20. Hoffman, M. et al. Conserv. Biol. 29, 1303–1313 (2015).

    Article  Google Scholar 

  21. Lewis, S. L., Wheeler, C. E., Mitchard, E. T. A. & Koch, A. Nature 568, 25–28 (2019).

    Article  CAS  Google Scholar 

  22. IPCC Climate Change 2014: Synthesis Report (eds Core Writing Team, Pachauri, R. K. & Meyer L. A.) (IPCC, 2014).

  23. Dinerstein, E. et al. Sci. Adv. 5, eaaw2869 (2019).

    Article  CAS  Google Scholar 

  24. Marques, A. et al. Nat. Ecol. Evol. 3, 628–637 (2019).

    Article  Google Scholar 

  25. Maxwell, S. L., Fuller, R. A., Brooks, T. M. & Watson, J. E. M. Nature 536, 143–145 (2016).

    Article  CAS  Google Scholar 

  26. Koch, A., Brierley, C., Maslin, M. M. & Lewis, S. L. Quat. Sci. Rev. 207, 13–36 (2019).

    Article  Google Scholar 

  27. Martin, T. G. & Watson, J. E. M. Nat. Clim. Change 6, 122–124 (2016).

    Article  Google Scholar 

  28. Egler, H.-P. & Frazao, R. Sustainable Infrastructure and Finance: How to Contribute to a Sustainable Future Working Paper 16/09 (UNEP, 2016).

  29. The Belt and Road Initiative: WWF Recommendations and Spatial Analysis WWF Briefing Paper (WWF, 2017);

  30. Hughes, A. C. Conserv. Biol. 33, 883–894 (2019).

    Article  Google Scholar 

  31. Nijman, V. Biodivers. Conserv. 19, 1101–1114 (2010).

    Article  Google Scholar 

  32. Linkie, M. et al. Biol. Conserv. 219, 105–109 (2018).

    Article  Google Scholar 

  33. The World Database on Protected Areas (UNEP-WCMC, 2018);

  34. Venter, O. et al. Nat. Commun. 7, 12558 (2016).

    Article  CAS  Google Scholar 

  35. di Marco, M., Venter, O., Possingham, H. P. & Watson, J. E. M. Nat. Commun. 9, 4621 (2018).

    Article  Google Scholar 

  36. Minnemeyer, S., Laestadius, L., Sizer, N., Saint-Laurent, C. & Potapov, P. Atlas of Forest and Landscape Restoration Opportunities (World Resources Institute, 2014).

  37. Losos, E., Pfaff, A., Olander, L., Mason, S. & Morgan, S. Reducing Environmental Risks from Belt and Road Initiative Investments in Transportation Infrastructure Policy Research Working Paper 8718 (World Bank Group, 2019).

Download references


We thank G. M. Mace and C. Bryan for feedback on a draft version of this manuscript.

Author information

Authors and Affiliations



J.W.B., J.E.M.W., E.J.M.-G., M.J.B. and S.P.S. conceived the manuscript. J.W.B. wrote the manuscript, with support from J.E.M.W. and E.J.M.-G. P.F.E.A., W.N.S.A., J.B., T.M.B., M.J.B., A.H., M.M., J.G.R., N.S., S.P.S., S.N.S. and S.O.S.E.z.E. provided substantive insights and gave comment and review.

Corresponding author

Correspondence to Joseph W. Bull.

Ethics declarations

Competing interests

The authors declare no competing interests.

Extended data

Extended Data Fig. 1 Map of the full extent of the Belt and Road Initiative (BRI).

Latest estimate of the spatial distribution of anthropogenic impacts upon nature, the terrestrial ‘human footprint’ [data from 18,19], against proposed development corridors for BRI [38]. Note that the human footprint addresses the ‘ecosystems’ dimension of biodiversity only. Yellow border = area displayed in Box 1 (China and Central Asia).

Extended Data Fig. 2 Map of the central and eastern BRI region featuring examples of primarily illegally traded wildlife products, along with the approximate direction of trade.

Overlaid onto the human footprint and main BRI corridors displayed in Extended Data Fig. 1.

Extended Data Fig. 3 Global Inventory of Biodiversity Offset Policies (GIBOP) policy scores (0 – 3) for the 196 parties to the CBD.

The recently developed GIBOP [26] reports the results of the most comprehensive global analysis of national net outcome-type conservation policies. The interpretation of GIBOP policy score, in terms of the existence of national policies applying a mitigation hierarchy to biodiversity impacts, is given in the figure. Inset: Rule of Law index (World Justice Project, 2019) scores against GIBOP policy score for the 123 of those countries for which data are available, giving an indication of the likelihood of legal compliance, grouped again by GIBOP policy score.

Supplementary information

Supplementary Information

Supplementary Table 1

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bull, J.W., Milner-Gulland, E.J., Addison, P.F.E. et al. Net positive outcomes for nature. Nat Ecol Evol 4, 4–7 (2020).

Download citation

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing