Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Primate mosaic brain evolution reflects selection on sensory and cognitive specialization

Abstract

The mammalian brain is composed of numerous functionally distinct structures that vary in size within and between clades, reflecting selection for sensory and cognitive specialization. Primates represent a particularly interesting case in which to examine mosaic brain evolution since they exhibit marked behavioural variation, spanning most social structures, diets and activity periods observed across mammals. Although studies have consistently demonstrated a trade-off between visual and olfactory specialization in primates, studies of some regions (for example, the neocortex) have produced conflicting results. Here, we analyse the socioecological factors influencing the relative size of 33 brain regions, using updated statistical techniques and data from more species and individuals than previous studies. Our results confirm that group-living species and those with high-quality diets have expanded olfactory or visual systems, depending on whether they are nocturnal or diurnal. Conversely, regions associated with spatial memory are expanded in solitary species and those with low-quality diets, suggesting a trade-off between visual processing and spatial memory. Contrary to previous work, we show that diet quality predicts relative neocortex size at least as well as, if not better than, social complexity. Overall, our results demonstrate that primate brain structure is largely driven by selection on sensory and cognitive specializations that develop in response to divergent socioecological niches.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Relative region size differs between primate species due to variation in diets, social systems and activity patterns.
Fig. 2: The relative sizes of specific brain regions increase across primate species according to suborder and socioecology.

Similar content being viewed by others

Data availability

The authors declare that all data supporting the findings of this study are available in the paper and its Supplementary Information.

References

  1. Striedter, G. F. Principles of Brain Evolution (Sinauer, 2005).

  2. Finlay, B. L. & Darlington, R. B. Linked regularities in the development and evolution of mammalian brains. Science 268, 1578–1584 (1995).

    CAS  PubMed  Google Scholar 

  3. Barton, R. A. & Harvey, P. H. Mosaic evolution of brain structure in mammals. Nature 405, 1055–1058 (2000).

    CAS  PubMed  Google Scholar 

  4. Maguire, E. A. et al. Navigation-related structural change in the hippocampi of taxi drivers. Proc. Natl Acad. Sci. USA 97, 4398–4403 (2000).

    CAS  PubMed  Google Scholar 

  5. Jacobs, L. F., Gaulin, S. J., Sherry, D. F. & Hoffman, G. E. Evolution of spatial cognition: sex-specific patterns of spatial behavior predict hippocampal size. Proc. Natl Acad. Sci. USA 87, 6349–6352 (1990).

    CAS  PubMed  Google Scholar 

  6. Krebs, J. R. Food-storing birds: adaptive specialization in brain and behaviour? Phil. Trans. R. Soc. Lond. B 329, 153–160 (1990).

    CAS  Google Scholar 

  7. Healy, S. & Guilford, T. Olfactory bulb size and nocturnality in birds. Evolution 44, 339–346 (1990).

    PubMed  Google Scholar 

  8. Barton, R. A., Purvis, A. & Harvey, P. H. Evolutionary radiation of visual and olfactory brain systems in primates, bats and insectivores. Phil. Trans. R. Soc. Lond. B 348, 381–392 (1995).

    CAS  Google Scholar 

  9. Devoogd, T. J., Krebs, J. R., Healy, S. D. & Purvis, A. Relations between song repertoire size and the volume of brain nuclei related to song: comparative evolutionary analyses amongst oscine birds. Proc. R. Soc. Lond. B 254, 75–82 (1993).

    CAS  Google Scholar 

  10. Herculano-Houzel, S. Not all brains are made the same: new views on brain scaling in evolution. Brain Behav. Evol. 78, 22–36 (2011).

    PubMed  Google Scholar 

  11. Rowe, N. & Myers, M. All the World’s Primates (Pogonias, 2016).

  12. Clutton-Brock, T. H. & Harvey, P. H. Primates, brains and ecology. J. Zool. 190, 309–323 (1980).

    Google Scholar 

  13. Milton, K. in Machiavellian Intelligence: Social Expertise and the Evolution of Intellect in Monkeys, Apes, and Humans (eds. Byrne, R. W. & Whiten, A.) 285–305 (Clarendon Press/Oxford Univ. Press, 1988).

  14. Barton, R. A. in On the Move: How and Why Animals Travel in Groups (eds Boinski, S. & Garber, P. A.) 204–237 (Univ. Chicago Press, 2000).

  15. Dunbar, R. I. The social brain hypothesis. Evol. Anthropol. 6, 178–190 (1998).

    Google Scholar 

  16. Schillaci, M. A. Primate mating systems and the evolution of neocortex size. J. Mammal. 89, 58–63 (2008).

    Google Scholar 

  17. Dunbar, R. I. & Shultz, S. Understanding primate brain evolution. Phil. Trans. R. Soc. Lond. B 362, 649–658 (2007).

    CAS  Google Scholar 

  18. Barton, R. A. Neocortex size and behavioural ecology in primates. Proc. R. Soc. Lond. B 263, 173–177 (1996).

    CAS  Google Scholar 

  19. Barton, R. A. Visual specialization and brain evolution in primates. Proc. R. Soc. Lond. B 265, 1933–1937 (1998).

    CAS  Google Scholar 

  20. Barton, R. A. Olfactory evolution and behavioral ecology in primates. Am. J. Primatol. 68, 545–558 (2006).

    PubMed  Google Scholar 

  21. Kelley, A. E., Baldo, B. A., Pratt, W. E. & Will, M. J. Corticostriatal-hypothalamic circuitry and food motivation: integration of energy, action and reward. Physiol. Behav. 86, 773–795 (2005).

    CAS  PubMed  Google Scholar 

  22. Izuma, K., Saito, D. N. & Sadato, N. Processing of social and monetary rewards in the human striatum. Neuron 58, 284–294 (2008).

    CAS  PubMed  Google Scholar 

  23. Freckleton, R. P. The seven deadly sins of comparative analysis. J. Evol. Biol. 22, 1367–1375 (2009).

    CAS  PubMed  Google Scholar 

  24. Stephan, H., Frahm, H. & Baron, G. New and revised data on volumes of brain structures in insectivores and primates. Folia Primatol. 35, 1–29 (1981).

    CAS  PubMed  Google Scholar 

  25. Parker, S. T. Re-evaluating the extractive foraging hypothesis. New Ideas Psychol. 37, 1–12 (2015).

    Google Scholar 

  26. Arnold, C., Matthews, L. J. & Nunn, C. L. The 10kTrees website: a new online resource for primate phylogeny. Evol. Anthropol. 19, 114–118 (2010).

    Google Scholar 

  27. Perelman, P. et al. A molecular phylogeny of living primates. PLoS Genet. 7, e1001342 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Pagel, M. & Meade, A. BayesTraits v.2.0 (Univ. Reading, 2013).

  29. Mundry, R. in Modern Phylogenetic Comparative Methods and their Application in Evolutionary Biology (ed. Garamszegi, L. Z.) 131–153 (Springer, 2014).

  30. Williams, B. A., Kay, R. F. & Kirk, E. C. New perspectives on anthropoid origins. Proc. Natl Acad. Sci. USA 107, 4797–4804 (2010).

    CAS  PubMed  Google Scholar 

  31. Alport, L. & Overdorff, D. The role of the accessory olfactory bulb in nocturnal mating systems. Am. J. Phys. Anthropol. 34 (Suppl.), 37 (2002).

  32. Charpentier, M. J., Boulet, M. & Drea, C. M. Smelling right: the scent of male lemurs advertises genetic quality and relatedness. Mol. Ecol. 17, 3225–3233 (2008).

    CAS  PubMed  Google Scholar 

  33. Dominy, N. J. Fruits, fingers, and fermentation: the sensory cues available to foraging primates. Integr. Comp. Biol. 44, 295–303 (2004).

    PubMed  Google Scholar 

  34. Frahm, H. D., Stephan, H. & Baron, G. Comparison of brain structure volumes in insectivora and primates. V. Area striata (AS). J. Hirnforsch. 25, 537–557 (1984).

    CAS  PubMed  Google Scholar 

  35. Barton, R. A. Primate brain evolution: integrating comparative, neurophysiological, and ethological data. Evol. Anthropol. 15, 224–236 (2006).

    Google Scholar 

  36. Allman, J. & McGuinness, E. Visual cortex in primates. Comp. Primate Biol. 4, 279–326 (1988).

    Google Scholar 

  37. Bergman, T. J. & Sheehan, M. J. Social knowledge and signals in primates. Am. J. Primatol. 75, 683–694 (2013).

    PubMed  Google Scholar 

  38. DeCasien, A. R., Williams, S. A. & Higham, J. P. Primate brain size is predicted by diet but not sociality. Nat. Ecol. Evol. 1, 0112 (2017).

    Google Scholar 

  39. Kudo, H. & Dunbar, R. I. M. Neocortex size and social network size in primates. Anim. Behav. 62, 711–722 (2001).

    Google Scholar 

  40. Barrett, L., Henzi, P. & Rendall, D. Social brains, simple minds: does social complexity really require cognitive complexity? Phil. Trans. R. Soc. Lond. B 362, 561–575 (2007).

    Google Scholar 

  41. Barton, R. A. Embodied cognitive evolution and the cerebellum. Phil. Trans. R. Soc. Lond. B 367, 2097–2107 (2012).

    Google Scholar 

  42. Craig, A. D. & Craig, A. D. How do you feel—now? The anterior insula and human awareness. Nat. Rev. Neurosci. 10, 59–70 (2009).

    CAS  PubMed  Google Scholar 

  43. Bauernfeind, A. L. et al. A volumetric comparison of the insular cortex and its subregions in primates. J. Hum. Evol. 64, 263–279 (2013).

    PubMed  PubMed Central  Google Scholar 

  44. Oberndorfer, T. A. et al. Altered insula response to sweet taste processing after recovery from anorexia and bulimia nervosa. Am. J. Psychiatry 170, 1143–1151 (2013).

    PubMed  PubMed Central  Google Scholar 

  45. Edler, M. A Comparative Analysis of Hippocampus Size and Ecological Factors in Primates. PhD thesis, Kent State Univ. (2007).

  46. Dominy, N. J., Lucas, P. W., Osorio, D. & Yamashita, N. The sensory ecology of primate food perception. Evol. Anthropol. 10, 171–186 (2001).

    Google Scholar 

  47. Thalmann, U. Contrasts between two nocturnal leaf‐eating lemurs. Evol. Anthropol. 11, 105–107 (2002).

    Google Scholar 

  48. Britt, A., Randriamandratonirina, N. J., Glasscock, K. D. & Iambana, B. R. Diet and feeding behaviour of Indri indri in a low-altitude rain forest. Folia Primatol. 73, 225–239 (2002).

    PubMed  Google Scholar 

  49. Joly, M. & Zimmermann, E. Do solitary foraging nocturnal mammals plan their routes? Biol. Lett. 7, 638–640 (2011).

    PubMed  PubMed Central  Google Scholar 

  50. Lührs, M. L., Dammhahn, M., Kappeler, P. M. & Fichtel, C. Spatial memory in the grey mouse lemur (Microcebus murinus). Anim. Cogn. 12, 599–609 (2009).

    PubMed  PubMed Central  Google Scholar 

  51. Stephan, H., Bauchot, R., & Andy, O. J. in The Primate Brain (eds Noback, C. R. & Montagna, W.) 289–297 (Appleton-Century-Crofts, 1970).

  52. Stephan, H., Baron, G., & Frahm, H. in Comparative Primate Biology Vol. 4 (eds Erwin, J. & Steklis, H. D.) 1–38 (Alan R. Liss, 1988).

  53. Sherwood, C. C. et al. Evolution of the brainstem orofacial motor system in primates: a comparative study of trigeminal, facial, and hypoglossal nuclei. J. Hum. Evol. 48, 45–84 (2005).

    PubMed  Google Scholar 

  54. Bush, E. C. & Allman, J. M. Three-dimensional structure and evolution of primate primary visual cortex. Anat. Rec. A 281, 1088–1094 (2004).

    Google Scholar 

  55. Bush, E. C. & Allman, J. M. The scaling of frontal cortex in primates and carnivores. Proc. Natl Acad. Sci. USA 101, 3962–3966 (2004).

    CAS  PubMed  Google Scholar 

  56. Barger, N., Stefanacci, L. & Semendeferi, K. A comparative volumetric analysis of the amygdaloid complex and basolateral division in the human and ape brain. Am. J. Phys. Anthropol. 134, 392–403 (2007).

    PubMed  Google Scholar 

  57. Barger, N., Hanson, K. L., Teffer, K., Schenker-Ahmed, N. M. & Semendeferi, K. Evidence for evolutionary specialization in human limbic structures. Front. Hum. Neurosci. 8, 277 (2014).

    PubMed  PubMed Central  Google Scholar 

  58. Stimpson, C. D. et al. Differential serotonergic innervation of the amygdala in bonobos and chimpanzees. Soc. Cogn. Affect. Neurosci. 11, 413–422 (2015).

    PubMed  PubMed Central  Google Scholar 

  59. Zilles, K. & Rehkämper, G. in Orang-utan Biology (ed. Schwartz, J. H.) 157–176 (Oxford Univ. Press, 1988).

  60. De Sousa, A. A. et al. Hominoid visual brain structure volumes and the position of the lunate sulcus. J. Hum. Evol. 58, 281–292 (2010).

    PubMed  Google Scholar 

  61. MacLeod, C. E., Zilles, K., Schleicher, A., Rilling, J. K. & Gibson, K. R. Expansion of the neocerebellum in Hominoidea. J. Hum. Evol. 44, 401–429 (2003).

    PubMed  Google Scholar 

  62. Rilling, J. K. & Insel, T. R. Evolution of the cerebellum in primates: differences in relative volume among monkeys, apes and humans. Brain Behav. Evol. 52, 308–314 (1998).

    CAS  PubMed  Google Scholar 

  63. Rilling, J. K. & Insel, T. R. The primate neocortex in comparative perspective using magnetic resonance imaging. J. Hum. Evol. 37, 191–223 (1999).

    CAS  PubMed  Google Scholar 

  64. Sherwood, C. C. et al. Brain structure variation in great apes, with attention to the mountain gorilla (Gorilla beringei beringei). Am. J. Primatol. 63, 149–164 (2004).

    PubMed  Google Scholar 

  65. Barks, S. K. et al. Brain organization of gorillas reflects species differences in ecology. Am. J. Phys. Anthropol. 156, 252–262 (2015).

    PubMed  Google Scholar 

  66. Semendeferi, K. & Damasio, H. The brain and its main anatomical subdivisions in living hominoids using magnetic resonance imaging. J. Hum. Evol. 38, 317–332 (2000).

    CAS  PubMed  Google Scholar 

  67. Navarrete, A. F. et al. Primate brain anatomy: new volumetric MRI measurements for neuroanatomical studies. Brain Behav. Evol. 91, 1–9 (2018).

    Google Scholar 

  68. Erratum. Brain Behav. Evol. 92, 182–184 (2019).

  69. Kappeler, P. M. & Heymann, E. W. Nonconvergence in the evolution of primate life history and socio-ecology. Biol. J. Linn. Soc. 59, 297–326 (1996).

    Google Scholar 

  70. Kay, R. F. & Kirk, E. C. Osteological evidence for the evolution of activity pattern and visual acuity in primates. Am. J. Phys. Anthropol. 113, 235–262 (2000).

    CAS  PubMed  Google Scholar 

  71. Kirk, E. C. Effects of activity pattern on eye size and orbital aperture size in primates. J. Hum. Evol. 51, 159–170 (2006).

    PubMed  Google Scholar 

  72. Fernandez-Duque, E. Influences of moonlight, ambient temperature, and food availability on the diurnal and nocturnal activity of owl monkeys (Aotus azarai). Behav. Ecol. Sociobiol. 54, 431–440 (2003).

    Google Scholar 

  73. Sailer, L. D., Gaulin, S. J., Boster, J. S. & Kurland, J. A. Measuring the relationship between dietary quality and body size in primates. Primates 26, 14–27 (1985).

    Google Scholar 

  74. Leonard, W. R. & Robertson, M. L. in On the Move: How and Why Animals Travel in Groups (eds Boinski, S. & Garber, P. A.) 628–648 (Univ. of Chicago Press, 2000).

  75. Hoshino, J. Feeding ecology of mandrills (Mandrillus sphinx) in Campo animal reserve, Cameroon. Primates 26, 248–273 (1985).

    Google Scholar 

  76. Leonard, W. R., Robertson, M. L., Snodgrass, J. J. & Kuzawa, C. W. Metabolic correlates of hominid brain evolution. Comp. Biochem. Physiol. A 136, 5–15 (2003).

    Google Scholar 

  77. Ross, C. Basal metabolic rate, body weight and diet in primates: an evaluation of the evidence. Folia Primatol. 58, 7–23 (1992).

    CAS  PubMed  Google Scholar 

  78. Rigamonti, M. M. in Lemur Social Systems and Their Ecological Basis (eds Ganzhorn, J. & Kappeler, P. M.) 25–39 (Springer, 1993).

  79. Prates, H. M. & Bicca-Marques, J. C. Age-sex analysis of activity budget, diet, and positional behavior in Alouatta caraya in an orchard forest. Int. J. Primatol. 29, 703 (2008).

    Google Scholar 

  80. Porter, L. M. Dietary differences among sympatric Callitrichinae in northern Bolivia: Callimico goeldii, Saguinus fuscicollis and S. labiatus. Int. J. Primatol. 22, 961–992 (2001).

    Google Scholar 

  81. Ramirez, M. F., Freese, C. H. & Revilla, J. in The Biology and Conservation of the Callitrichidae (ed. Kleiman, D. G.) 91–104 (Smithsonian Institution, 1977).

  82. Mitani, M. Cercocebus torquatus: adaptive feeding and ranging behaviors related to seasonal fluctuations of food resources in the tropical rain forest of south-western Cameroon. Primates 30, 307–323 (1989).

    Google Scholar 

  83. Wright, P. C. & Martin, L. B. in Creatures of the Dark (eds Alterman, L., Doyle, G. A. & Izard, M. K.) 45–60 (Springer, 1995).

  84. Fietz, J. & Ganzhorn, J. U. Feeding ecology of the hibernating primate Cheirogaleus medius: how does it get so fat? Oecologia 121, 157–164 (1999).

    PubMed  Google Scholar 

  85. Fimbel, C., Vedder, A., Dierenfeld, E. & Mulindahabi, F. An ecological basis for large group size in Colobus angolensis in the Nyungwe Forest, Rwanda. Afr. J. Ecol. 39, 83–92 (2001).

    Google Scholar 

  86. Rothman, J. M., Plumptre, A. J., Dierenfeld, E. S. & Pell, A. N. Nutritional composition of the diet of the gorilla (Gorilla beringei): a comparison between two montane habitats. J. Trop. Ecol. 23, 673–682 (2007).

    Google Scholar 

  87. Stevenson, P. R., Quinones, M. J. & Ahumada, J. A. Ecological strategies of woolly monkeys (Lagothrix lagotricha) at Tinigua National Park, Colombia. Am. J. Primatol. 32, 123–140 (1994).

    Google Scholar 

  88. Norconk, M. A. & Setz, E. Z. in Evolutionary Biology and Conservation of Titis, Sakis and Uacaris (eds Veiga, L. M., Barnett, A. A., Ferrari, S. F. & Norconk, M. A.) 72–83 (Cambridge Univ. Press, 2013).

  89. Thorén, S. et al. Seasonal changes in feeding ecology and activity patterns of two sympatric mouse lemur species, the gray mouse lemur (Microcebus murinus) and the golden-brown mouse lemur (M. ravelobensis), in northwestern Madagascar. Int. J. Primatol. 32, 566–586 (2011).

    Google Scholar 

  90. Kaplan, H. S. et al. in Guts and Brains: An Integrative Approach to the Hominin Record (ed. Roebroeks, W.) 47–90 (Leiden Univ. Press, 2007).

  91. Raboy, B. E. & Dietz, J. M. Diet, foraging, and use of space in wild golden‐headed lion tamarins. Am. J. Primatol. 63, 1–15 (2004).

    PubMed  Google Scholar 

  92. Sterling, E. J., Dierenfeld, E. S., Ashbourne, C. J. & Feistner, A. T. Dietary intake, food composition and nutrient intake in wild and captive populations of Daubentonia madagascariensis. Folia Primatol. 62, 115–124 (1994).

    CAS  PubMed  Google Scholar 

  93. Isbell, L. A. Diet for a small primate: insectivory and gummivory in the (large) patas monkey (Erythrocebus patas pyrrhonotus). Am. J. Primatol. 45, 381–398 (1998).

    CAS  PubMed  Google Scholar 

  94. Shultz, S., Opie, C. & Atkinson, Q. D. Stepwise evolution of stable sociality in primates. Nature 479, 219 (2011).

    CAS  PubMed  Google Scholar 

  95. Kappeler, P. M. & van Schaik, C. P. Evolution of primate social systems. Int. J. Primatol. 23, 707–740 (2002).

    Google Scholar 

  96. Muller, A. E. & Thalmann, U. R. S. Origin and evolution of primate social organisation: a reconstruction. Biol. Rev. 75, 405–435 (2000).

    CAS  PubMed  Google Scholar 

  97. Charles-Dominique, P. Ecology and Behaviour of Nocturnal Primates (Duckworth, 1977).

  98. Nekaris, A. & Bearder, S. K. in Primates in Perspective (eds Campbell, C. J., Fuentes, A., MacKinnon, K. C., Panger, M. & Bearder, S. K.) 24–45 (Oxford Univ. Press, 2007).

  99. Fuentes, A. Reevaluating primate monogamy. Am. Anthropol. 100, 890–907 (1998).

    Google Scholar 

  100. Baden, A. L., Webster, T. H. & Kamilar, J. M. Resource seasonality and reproduction predict fission–fusion dynamics in black‐and‐white ruffed lemurs (Varecia variegata). Am. J. Primatol. 78, 256–279 (2016).

    PubMed  Google Scholar 

  101. Harrison, M. E. & Chivers, D. J. The orangutan mating system and the unflanged male: a product of increased food stress during the late Miocene and Pliocene? J. Hum. Evol. 52, 275–293 (2007).

    PubMed  Google Scholar 

  102. Hall, J. S. et al. Survey of Grauer’s gorillas (Gorilla gorilla graueri) and eastern chimpanzees (Pan troglodytes schweinfurthi) in the Kahuzi-Biega National Park lowland sector and adjacent forest in eastern Democratic Republic of Congo. Int. J. Primatol. 19, 207–235 (1998).

    Google Scholar 

  103. Hu, G., Dong, X., Wei, Y., Zhu, Y. & Duan, X. Evidence for a decline of François’ langur Trachypithecus francoisi in Fusui Nature Reserve, south-west Guangxi, China. Oryx 38, 48–54 (2004).

    Google Scholar 

  104. Nunn, C. L. & Van Schaik, Van, C. P. in Reconstructing Behavior in the Primate Fossil Record (eds Plavcan, J. M., Kay, R. F., Jungers, W. L. & van Schaik, C. P.) 159–215 (Springer, 2002).

  105. Raftery, A. E. Bayesian model selection in social research. Socio Methodol. 25, 111–164 (1995).

    Google Scholar 

  106. Burnham, K. P., Anderson, D. R. & Huyvaert, K. P. AIC model selection and multimodel inference in behavioral ecology: some background, observations, and comparisons. Behav. Ecol. Sociobiol. 65, 23–35 (2011).

    Google Scholar 

  107. Richards, S. A., Whittingham, M. J. & Stephens, P. A. Model selection and model averaging in behavioural ecology: the utility of the IT-AIC framework. Behav. Ecol. Sociobiol. 65, 77–89 (2011).

    Google Scholar 

  108. Lehmann, J. & Dunbar, R. I. M. Network cohesion, group size and neocortex size in female-bonded Old World primates. Proc. R. Soc. Lond. B 276, 4417–4422 (2009).

    Google Scholar 

  109. Hair, J. F., Anderson, R. E., Tatham, R. L. & Black, W. C. Multivariate Data Analyses with Readings (Macmillan, 1995).

  110. Orme, C. D. L., Freckleton, R. P., Thomas, G. H., Petzoldt, T. & Fritz, S. A. The Caper Package: Comparative Analyses of Phylogenetics and Evolution in R (CRAN, 2012); http://caper.r-forge.r-project.org

  111. Pinheiro, J. C. & Bates, D. M. in Mixed-Effects Models in S and S-Plus (eds Pinheiro, J. & Bates, D.) 3–56 (Springer-Verlag, 2000).

  112. Paradis, E., Claude, J. & Strimmer, K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004).

    CAS  Google Scholar 

  113. Martins, E. P. & Hansen, T. F. in Phylogenies and the Comparative Method in Animal Behavior (eds Martins, E. P. & Martins, E. L. P.) 22–75 (Oxford Univ. Press, 1996).

  114. Graber, S. Phylogenetic Comparative Methods for Discrete Responses in Evolutionary Biology. Master’s thesis, Univ. Zurich (2013).

  115. Powell, L. E., Isler, K. & Barton, R. A. Re-evaluating the link between brain size and behavioural ecology in primates. Proc. R. Soc. Lond. B 284, 20171765 (2017).

    Google Scholar 

  116. Plummer, M., Best, N., Cowles, K. & Vines, K. CODA: convergence diagnosis and output analysis for MCMC. R News 6, 7–11 (2006).

    Google Scholar 

  117. Gelman, A. & Rubin, D. B. Inference from iterative simulation using multiple sequences. Stat. Sci. 7, 457–472 (1992).

    Google Scholar 

  118. Kiernan, J., & Rajakumar, R. Barr’s the Human Nervous System: An Anatomical Viewpoint (Lippincott Williams & Wilkins, 2013).

  119. Broadbent, N. J., Squire, L. R. & Clark, R. E. Spatial memory, recognition memory, and the hippocampus. Proc. Natl Acad. Sci. USA 101, 14515–14520 (2004).

    CAS  PubMed  Google Scholar 

  120. Roland, J. J. et al. Medial septum-diagonal band of Broca (MSDB) GABAergic regulation of hippocampal acetylcholine efflux is dependent on cognitive demands. J. Neurosci. 34, 506–514 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank C. Sherwood and R. Barton for helpful advice and K. Chiou for his artistic skill. For training in phylogenetic comparative methods, J.P.H. thanks the AnthroTree Workshop, which was supported by the NSF (grant no. BCS-0923791) and the National Evolutionary Synthesis Center (NSF grant no. EF-0905606). This material is based on work supported by the National Science Foundation Graduate Research Fellowship (grant no. DGE1342536) and the New York University MacCracken Fellowship Program.

Author information

Authors and Affiliations

Authors

Contributions

A.R.D. designed the project and performed the analyses with input from J.P.H. A.R.D. compiled the data. Both authors wrote the manuscript.

Corresponding author

Correspondence to Alex R. DeCasien.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Materials

Supplementary Figs. 1 and 2, list of tables, notes for tables, methods and appendix.

Reporting Summary

Supplementary Data 1

This file includes all neuroanatomical and socioecological (activity period, diet, DQI, social system and group size) data used in this study. Data sources and relevant notes are also included.

Supplementary Tables 1–12

10kTrees26 consensus tree BIC comparisons.

Supplementary Tables 13–24

10kTrees26 consensus tree PGLS/ANOVA results.

Supplementary Tables 25–28

10kTrees26 consensus tree PGLS/ANOVA results within activity pattern.

Supplementary Tables 29–32

Results across block of 1,000 trees from 10kTrees26—Bayesian MCMC analysis.

Supplementary Tables 33–36

Ref. 27 consensus tree BIC comparisons.

Supplementary Tables 37–40

Ref. 27 consensus tree PGLS/ANOVA results.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

DeCasien, A.R., Higham, J.P. Primate mosaic brain evolution reflects selection on sensory and cognitive specialization. Nat Ecol Evol 3, 1483–1493 (2019). https://doi.org/10.1038/s41559-019-0969-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-019-0969-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing