Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Vertical transmission of sponge microbiota is inconsistent and unfaithful

An Author Correction to this article was published on 02 March 2021

This article has been updated


Co-evolutionary theory predicts that if beneficial microbial symbionts improve host fitness, they should be faithfully transmitted to offspring. More recently, the hologenome theory of evolution predicts resemblance between parent and offspring microbiomes and high partner fidelity between host species and their vertically transmitted microbes. Here, we test these ideas in multiple coexisting host species with highly diverse microbiota, leveraging known parent–offspring pairs sampled from eight species of wild marine sponges (Porifera). We found that the processes governing vertical transmission were both neutral and selective. A neutral model was a better fit to larval (R 2 = 0.66) than to the adult microbiota (R 2 = 0.27), suggesting that the importance of non-neutral processes increases as the sponge host matures. Microbes that are enriched above neutral expectations in adults were disproportionately transferred to offspring. Patterns of vertical transmission were, however, incomplete: larval sponges shared, on average, 44.8% of microbes with their parents, which was not higher than the fraction they shared with nearby non-parental adults. Vertical transmission was also inconsistent across siblings, as larval sponges from the same parent shared only 17% of microbes. Finally, we found no evidence that vertically transmitted microbes are faithful to a single sponge host species. Surprisingly, larvae were as likely to share vertically transmitted microbes with larvae from other sponge species as they were with their own species. Our study demonstrates that common predictions of vertical transmission that stem from species-poor systems are not necessarily true when scaling up to diverse and complex microbiomes.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Taxonomic diversity is distributed along a sponge-specific axis.
Fig. 2: The processes underlying symbiont acquisition are both neutral and selective.
Fig. 3: Taxa that are enriched above neutral expectations in adults are disproportionately transferred to offspring.
Fig. 4: Taxonomic profiles of the microbiota between parents and offspring.
Fig. 5: Offspring does not share more taxa with its parent than with other conspecific adults, but siblings receive a small set of identical symbionts from their parent.
Fig. 6: Conspecific adults and larvae do not share more vertically transmitted taxa than heterospecific hosts.

Data availability

All sequence data are part of the Sponge EMP and can be downloaded from Data and code used in the focal study can be downloaded from The raw sequences analysed in this study can be extracted from the Sponge EMP data using the accession numbers available in the focal metadata.

Change history


  1. 1.

    Koch, H. & Schmid-Hempel, P. Socially transmitted gut microbiota protect bumble bees against an intestinal parasite. Proc. Natl Acad. Sci. USA 108, 19288–19292 (2011).

    CAS  PubMed  Google Scholar 

  2. 2.

    Smith, P. et al. Regulation of life span by the gut microbiota in the short-lived African turquoise killifish. eLife 6, e27014 (2017).

    PubMed  PubMed Central  Google Scholar 

  3. 3.

    Kwong, W. K., Mancenido, A. L. & Moran, N. A. Immune system stimulation by the native gut microbiota of honey bees. R. Soc. Open Sci. 4, 170003 (2017).

    PubMed  PubMed Central  Google Scholar 

  4. 4.

    Funkhouser, L. J. & Bordenstein, S. R. Mom knows best: the universality of maternal microbial transmission. PLoS Biol. 11, 1–9 (2013).

    Google Scholar 

  5. 5.

    Fisher, R. M., Henry, L. M., Cornwallis, C. K., Kiers, E. T. & West, S. A. The evolution of host-symbiont dependence. Nat. Commun. 8, 15973 EP (2017).

    Google Scholar 

  6. 6.

    Hartmann, A. C., Baird, A. H., Knowlton, N. & Huang, D. The paradox of environmental symbiont acquisition in obligate mutualisms. Curr. Biol. 27, 3711–3716.e3 (2017).

    CAS  PubMed  Google Scholar 

  7. 7.

    Russell, S. L. Transmission mode is associated with environment type and taxa across bacteria-eukaryote symbioses: a systematic review and meta-analysis. FEMS Microbiol. Lett. 366, fnz013 (2019).

    CAS  PubMed  Google Scholar 

  8. 8.

    Zilber-Rosenberg, I. & Rosenberg, E. Role of microorganisms in the evolution of animals and plants: the hologenome theory of evolution. FEMS Microbiol. Rev. 32, 723–735 (2008).

    CAS  PubMed  Google Scholar 

  9. 9.

    Bordenstein, S. R. & Theis, K. R. Host biology in light of the microbiome: ten principles of holobionts and hologenomes. PLoS Biol. 13, e1002226 (2015).

    PubMed  PubMed Central  Google Scholar 

  10. 10.

    Moran, N. A. & Sloan, D. B. The hologenome concept: helpful or hollow? PLoS Biol. 13, 1–10 (2015).

    Google Scholar 

  11. 11.

    Douglas, A. E. & Werren, J. H. Holes in the hologenome: why host-microbe symbioses are not holobionts. mBio 7, e02099-15 (2016).

    PubMed  PubMed Central  Google Scholar 

  12. 12.

    Rosenberg, E. & Zilber-Rosenberg, I. The hologenome concept of evolution after 10 years. Microbiome 6, 78 (2018).

    PubMed  PubMed Central  Google Scholar 

  13. 13.

    Ewald, P. W. Transmission modes and evolution of the parasitism-mutualism continuum. Ann. New Y. Acad. Sci. 503, 295–306 (1987).

    CAS  Google Scholar 

  14. 14.

    Bull, J. J., Ian Molineux, J. & Rice, W. R. Selection of benevolence in a host-parasite system. Evolution 45, 875–882 (1991).

    CAS  PubMed  Google Scholar 

  15. 15.

    Yamamura, N. Vertical transmission and evolution of mutualism from parasitism. Theor. Popul. Biol. 44, 95–109 (1993).

    Google Scholar 

  16. 16.

    Douglas, A. E. Symbiotic Interactions (Oxford Science Publications, 1994).

  17. 17.

    Thompson, J. N. The Coevolutionary Process (Univ. of Chicago Press, 1994).

  18. 18.

    Herre, E. A., Knowlton, N., Mueller, U. G. & Rehner, S. A. The evolution of mutualisms: exploring the paths between conflict and cooperation. Trends Ecol. Evol. 14, 49–53 (1999).

    CAS  PubMed  Google Scholar 

  19. 19.

    Wilkinson, D. M. & Sherratt, T. N. Horizontally acquired mutualisms, an unsolved problem in ecology? Oikos 92, 377–384 (2001).

    Google Scholar 

  20. 20.

    Sachs, J. L., Skophammer, R. G. & Regus, J. U. Evolutionary transitions in bacterial symbiosis. Proc. Natl Acad. Sci. USA 108, 10800 (2011).

    CAS  PubMed  Google Scholar 

  21. 21.

    Buchner, P. Endosymbiosis of Animals with Plant Microorganisms (Interscience Publishers, 1965).

  22. 22.

    Mclaren, D. J., Worms, M. J., Laurence, B. R. & Simpson, M. G. Micro-organisms in filarial larvae (Nematoda). Trans. R. Soc. Trop. Med. Hyg. 69, 509–514 (1975).

    CAS  PubMed  Google Scholar 

  23. 23.

    Fukatsu, T. & Hosokawa, T. Capsule-transmitted gut symbiotic bacterium of the Japanese common plataspid stinkbug, Megacopta punctatissima. Appl Environ. Microbiol. 68, 389–396 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Bates, J. M. et al. Distinct signals from the microbiota promote different aspects of zebrafish gut differentiation. Dev. Biol. 297, 374–386 (2006).

    CAS  PubMed  Google Scholar 

  25. 25.

    Kikuchi, Y., Hosokawa, T. & Fukatsu, T. Insect-microbe mutualism without vertical transmission: a stinkbug acquires a beneficial gut symbiont from the environment every generation. Appl. Environ. Microbiol. 73, 4308 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Ho, P. T. et al. Geographical structure of endosymbiotic bacteria hosted by Bathymodiolus mussels at Eastern Pacific hydrothermal vents. BMC Evolut. Biol. 17, 121 (2017).

    Google Scholar 

  27. 27.

    Genkai-Kato, M. & Yamamura, N. Evolution of mutualistic symbiosis without vertical transmission. Theor. Popul. Biol. 55, 309–323 (1999).

    CAS  PubMed  Google Scholar 

  28. 28.

    Nyholm, S. V., Stabb, E. V., Ruby, E. G. & McFall-Ngai, M. J. Establishment of an animal-bacterial association: recruiting symbiotic vibrios from the environment. Proc. Natl Acad. Sci. USA 97, 10231 (2000).

    CAS  PubMed  Google Scholar 

  29. 29.

    Dubilier, N. et al. Endosymbiotic sulphate-reducing and sulphide-oxidizing bacteria in an oligochaete worm. Nature 411, 298 EP (2001).

    Google Scholar 

  30. 30.

    Mushegian, A. A., Walser, J. C., Sullam, K. E. & Ebert, D. The microbiota of diapause: how host-microbe associations are formed after dormancy in an aquatic crustacean. J. Anim. Ecol. 87, 400–413 (2017).

    PubMed  Google Scholar 

  31. 31.

    Yin, Z. et al. Sponge grade body fossil with cellular resolution dating 60 Myr before the cambrian. Proc. Natl Acad. Sci. USA 112, E1453–E1460 (2015).

    CAS  PubMed  Google Scholar 

  32. 32.

    Taylor, M. W., Radax, R., Stegar, D. & Wagner, M. Sponge-associated microorganisms: evolution, evology, and biotechnological potential. Microbiol. Mol. Biol. Rev. 71, 295–347 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Fan, L. et al. Functional equivalence and evolutionary convergence in complex communities of microbial sponge symbionts. Proc. Natl Acad. Sci. USA 109, E1878–E1887 (2012).

    CAS  PubMed  Google Scholar 

  34. 34.

    Goeij, J. M. D. et al. Surviving in a marine desert: the sponge loop retains resources within coral reefs. Science 342, 108–110 (2013).

    PubMed  Google Scholar 

  35. 35.

    Sará, M. V. J. & Grassé, P. P. (eds) Traité de Zoologie Spongiaires 462–576 (Masson et Cie, 1973).

  36. 36.

    Uriz, M. J., Xavier, T. & Mikel, A. B. Morphology and ultrastructure of the swimming larvae of Crambe crambe (Demospongiae, Poecilosclerida). Invertebr. Biol. 120, 295–307 (2001).

    Google Scholar 

  37. 37.

    de Caralt, S., Uriz, M. J. & Wijffels, R. H. Vertical transmission and successive location of symbiotic bacteria during embryo development and larva formation in corticium candelabrum (Porifera: Demospongiae). J. Mar. Biol. Assoc. U.K. 87, 1693–1699 (2007).

    Google Scholar 

  38. 38.

    Uriz, M. J., Turon, X. & Mariani, S. Ultrastructure and dispersal potential of sponge larvae: tufted versus evenly ciliated parenchymellae. Mar. Ecol. 29, 280–297 (2008).

    Google Scholar 

  39. 39.

    Schmitt, S., Angermeier, H., Schiller, R., Lindquist, N. & Hentschel, U. Molecular microbial diversity survey of sponge reproductive stages and mechanistic insights into vertical transmission of microbial symbionts. Appl. Environ. Microbiol. 74, 7694–7708 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Hentschel, U. et al. Molecular evidence for a uniform microbial community in sponges from different oceans molecular evidence for a uniform microbial community in sponges from different oceans. Appl. Environ. Microbiol. 68, 4431–4440 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Simister, R. L., Deines, P., Botté, E. S., Webster, N. S. & Taylor, M. W. Sponge-specific clusters revisited: a comprehensive phylogeny of sponge-associated microorganisms. Environ. Microbiol. 14, 517–524 (2012).

    CAS  PubMed  Google Scholar 

  42. 42.

    Vacelet, J. & Donadey, C. Electron microscope study of the association between some sponges and bacteria. J. Exp. Mar. Biol. Ecol. 30, 301–314 (1977).

    Google Scholar 

  43. 43.

    Usher, K. M., Kuo, J., Fromont, J. & Sutton, D. C. Vertical transmission of cyanobacterial symbionts in the marine sponge Chondrilla australiensis (Demospongiae). Hydrobiologia 461, 9–13 (2001).

    Google Scholar 

  44. 44.

    Ereskovsky, A. V. & Tokina, D. B. Morphology and fine structure of the swimming larvae of Ircinia oros (Porifera, Demospongiae, Dictyoceratida). Invertebr. Reprod. Dev. 45, 137–150 (2004).

    Google Scholar 

  45. 45.

    Ereskovsky, A. V., Gonobobleva, E. & Vishnyakov, A. Morphological evidence for vertical transmission of symbiotic bacteria in the viviparous sponge Halisarca dujardini Johnston (Porifera, Demospongiae, Halisarcida). Mar. Biol. 146, 869–875 (2005).

    Google Scholar 

  46. 46.

    Maldonado, M. Intergenerational transmission of symbiotic bacteria in oviparous and viviparous demosponges, with emphasis on intracytoplasmically-compartmented bacterial types. J. Mar. Biol. Assoc. U.K. 87, 1701–1713 (2007).

    Google Scholar 

  47. 47.

    Riesgo, A. & Maldonado, M. Differences in reproductive timing among sponges sharing habitat and thermal regime. Invertebr. Biol. 127, 357–367 (2008).

    Google Scholar 

  48. 48.

    Maldonado, M. & Riesgo, A. Gametogenesis, embryogenesis, and larval features of the oviparous sponge Petrosia ficiformis (Haplosclerida, Demospongiae). Mar. Biol. 156, 2181–2197 (2009).

    Google Scholar 

  49. 49.

    Enticknap, J. J., Kelly, M., Peraud, O. & Hill, R. T. Characterization of a culturable alphaproteobacterial symbiont common to many marine sponges and evidence for vertical transmission via sponge larvae. Appl. Environ. Microbiol. 72, 3724–3732 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Schmitt, S., Weisz, J. B., Lindquist, N. & Hentschel, U. Vertical transmission of a phylogenetically complex microbial consortium in the viviparous sponge Ircinia felix. Appl. Environ. Microbiol. 73, 2067–2078 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Lee, O. O., Chiu, P. Y., Wong, Y. H., Pawlik, J. R. & Qian, P. Y. Evidence for vertical transmission of bacterial symbionts from adult to embryo in the Caribbean sponge Svenzea zeai. Appl. Environ. Microbiol. 75, 6147–6156 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Webster, N. S. et al. Deep sequencing reveals exceptional diversity and modes of transmission for bacterial sponge symbionts. Environ. Microbiol. 12, 2070–2082 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Sharp, K. H., Eam, B., John Faulkner, D. & Haygood, M. G. Vertical transmission of diverse microbes in the tropical sponge Corticium sp. Appl. Environ. Microbiol. 73, 622–629 (2007).

    CAS  PubMed  Google Scholar 

  54. 54.

    Kamke, J. et al. The candidate phylum poribacteria by single-cell genomics: new insights into phylogeny, cell-compartmentation, eukaryote-like repeat proteins, and other genomic features. PLoS ONE 9 (2014).

    PubMed  PubMed Central  Google Scholar 

  55. 55.

    Bayer, K., Jahn, M. T., Slaby, B. M., Moitinho-Silva, L. & Hentschel, U. Marine sponges as Chloroflexi hot spots: genomic insights and high-resolution visualization of an abundant and diverse symbiotic clade. mSystems 6, e00150-18 (2018).

    Google Scholar 

  56. 56.

    Carmen, A. G. et al. Phylogeny and genomics of SAUL, an enigmatic bacterial lineage frequently associated with marine sponges. Environ. Microbiol. 20, 561–576 (2017).

    Google Scholar 

  57. 57.

    Pedrós-Alió, C. Dipping into the rare biosphere. Science 315, 192 (2007).

    PubMed  Google Scholar 

  58. 58.

    Taylor, M. W. et al. ‘Sponge-specific’ bacteria are widespread (but rare) in diverse marine environments. ISME J. 7, 438–443 (2013).

    CAS  PubMed  Google Scholar 

  59. 59.

    Sloan, W. T. et al. Quantifying the roles of immigration and chance in shaping prokaryote community structure. Environ. Microbiol. 8, 732–740 (2006).

    PubMed  Google Scholar 

  60. 60.

    Burns, A. R. et al. Contribution of neutral processes to the assembly of gut microbial communities in the zebrafish over host development. ISME J. 10, 655 EP (2015).

    Google Scholar 

  61. 61.

    Usher, K. M., Sutton, D. C., Toze, S., Kuo, J. & Fromont, J. Inter-generational transmission of microbial symbionts in the marine sponge Chondrilla australiensis (Demospongiae). Mar. Freshw. Res. 56, 125–131 (2005).

    Google Scholar 

  62. 62.

    Kaye, H. R. & Reiswig, H. M. Sexual reproduction in four Caribbean commercial sponges. III. Larval behaviour, settlement and metamorphosis. Invertebr. Reprod. Dev. 19, 25–35 (1991).

    Google Scholar 

  63. 63.

    Kaye, H. R. Sexual reproduction in four Caribbean commercial sponges. II. Oogenesis and transfer of bacterial symbionts. Invertebr. Reprod. Dev. 19, 13–24 (1991).

    Google Scholar 

  64. 64.

    Gaino, E., Burlando, B., Buffa, P. & Sará, M. Ultrastructural study of the mature egg of Tethya citrina Sará & Melone (Porifera, Demospongiae). Gamete Res. 16, 259–265 (1987).

    CAS  PubMed  Google Scholar 

  65. 65.

    Sciscioli, M., Liaci, L. S., Lepore, E., Gherardi, M. & Simpson, T. L. Ultrastructural study of the mature egg of the marine sponge Stelletta grubii (Porifera, Demospongiae). Mol. Reprod. Dev. 28, 346–350 (1991).

    CAS  PubMed  Google Scholar 

  66. 66.

    Sciscioli, M., Lepore, E., Gherardi, M. & Liaci, L. S. Transfer of symbiotic bacteria in the mature oocyte of. Geodia cydonium (Porifera, Demosponsgiae): an ultrastructural study. Cah. Biol. Mar. 35, 471–478 (1994).

    Google Scholar 

  67. 67.

    Maldonado, M. Embryonic development of verongid demosponges supports the independent acquisition of spongin skeletons as an alternative to the siliceous skeleton of sponges. Biol. J. Linn. Soc. 97, 427–447 (2009).

    Google Scholar 

  68. 68.

    Bowden, S. E. & Drake, J. M. Ecology of multi-host pathogens of animals. Nat. Educ. Knowledge 8, 5 (2013).

    Google Scholar 

  69. 69.

    Dormann, C. F. & Strauss, R. A method for detecting modules in quantitative bipartite networks. Methods Ecol. Evol. 5, 90–98 (2013).

    Google Scholar 

  70. 70.

    Beckett, S. J. Improved community detection in weighted bipartite networks. R. Soc. Open Sci. 3, 140536 (2016).

    PubMed  PubMed Central  Google Scholar 

  71. 71.

    Arenas, L. D., Díaz-Guilera, A. & Duch, J. A. Comparing community structure identification. J. Stat. Mech. 2005, P09008 (2005).

    Google Scholar 

  72. 72.

    Barber, M. J. Modularity and community detection in bipartite networks. Phys. Rev. E 76, 066102 (2007).

    Google Scholar 

  73. 73.

    Thébault, E. Identifying compartments in presence-absence matrices and bipartite networks: insights into modularity measures. J. Biogeogr. 40, 759–768 (2012).

    Google Scholar 

  74. 74.

    Thomas, T. et al. Diversity, structure and convergent evolution of the global sponge microbiome. Nat. Commun. 7, 11870 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. 75.

    Reveillaud, J. et al. Host-specificity among abundant and rare taxa in the sponge microbiome. ISME J. 8, 1198–1209 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. 76.

    Blanquer, A., Uriz, M. J. & Galand, P. E. Removing environmental sources of variation to gain insight on symbionts vs. transient microbes in high and low microbial abundance sponges. Environ. Microbiol. 15, 3008–3019 (2013).

    CAS  PubMed  Google Scholar 

  77. 77.

    Björk, J. R., Díez-Vives, C., Coma, R., Ribes, M. & Montoya, J. M. Specificity and temporal dynamics of complex bacteria-sponge symbiotic interactions. Ecology 94, 2781–2791 (2013).

    PubMed  Google Scholar 

  78. 78.

    Björk, J. R., O’Hara, R. B., Ribes, M., Coma, R. & Montoya, J. M. The dynamic core microbiome: structure, dynamics and stability. Preprint at (2018).

  79. 79.

    Roughgarden, J. Holobiont evolution: model with lineal vs. collective hologenome inheritance. Preprint at (2019).

  80. 80.

    Fukami, T. Historical contingency in community assembly: integrating niches, species pools, and priority effects. Annu. Rev. Ecol. Evol. Syst. 46, 1–23 (2015).

    Google Scholar 

  81. 81.

    Martínez, I. et al. Experimental evaluation of the importance of colonization history in early-life gut microbiota assembly. eLife 7, e36521 (2018).

    PubMed  PubMed Central  Google Scholar 

  82. 82.

    Sprockett, D., Fukami, T. & Relman, D. A. Role of priority effects in the early-life assembly of the gut microbiota. Nat. Rev. Gastroenterol. Hepatol. 15, 197 EP (2018).

    Google Scholar 

  83. 83.

    Litvak, Y. & Bäumler, A. J. The founder hypothesis: a basis for microbiota resistance, diversity in taxa carriage, and colonization resistance against pathogens. PLoS Pathog. 15, 1–6 (2019).

    Google Scholar 

  84. 84.

    Lindquist, N. Palatability of invertebrate larvae to corals and sea anemones. Mar. Biol. 126, 745–755 (1996).

    Google Scholar 

  85. 85.

    Caporaso, J. G. et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 6, 1621–1624 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. 86.

    Gilbert, J. A., Jansson, J. K. & Knight, R. The Earth Microbiome Project: successes and aspirations. BMC Biol. 12, 69 (2014).

    PubMed  PubMed Central  Google Scholar 

  87. 87.

    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2016).

  88. 88.

    Callahan, B. J. et al. DADA2: high resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. 89.

    Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. 90.

    McMurdie, P. J. & Holmes, S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE. 8, 1–11 (2013).

    Google Scholar 

Download references


We thank R. Coma and E. Serrano for help with sponge taxonomic identification, and E. Canals Sallent and E. Serrano for help with field sampling. J.R.B. was supported by an FPI Fellowship from the Spanish Government (No. BES-2011-049043). J.M.M. was supported by the French LabEx TULIP (Nos. ANR-10-LABX-41 and ANR-11-IDEX-002-02), by the Region Midi-Pyrenees project (No. CNRS 121090) and by the FRAGCLIM Consolidator Grant, funded by the European Research Council under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 726176). This project also received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 796011.

Author information




J.R.B. and J.M.M. conceived the study. J.R.B. performed the fieldwork and analysed the data. J.R.B. and J.M.M. drafted the first versions of the manuscript. J.R.B. and E.A. refined the ideas and wrote the final version of the paper. C.D. helped in the field and extracted DNA from the larvae. C.A.G. identified the sponge-specific clusters. All authors commented on and approved of later versions of the paper.

Corresponding authors

Correspondence to Johannes R. Björk or Elizabeth A. Archie or José M. Montoya.

Ethics declarations


Because marine sponges are invertebrates, no permission was sought or required in order to conduct field sampling.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–3 and Supplementary Figs. 1–27

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Björk, J.R., Díez-Vives, C., Astudillo-García, C. et al. Vertical transmission of sponge microbiota is inconsistent and unfaithful. Nat Ecol Evol 3, 1172–1183 (2019).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing