Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Genetic regulation of amphioxus somitogenesis informs the evolution of the vertebrate head mesoderm

Abstract

The evolution of vertebrates from an ancestral chordate was accompanied by the acquisition of a predatory lifestyle closely associated to the origin of a novel anterior structure, the highly specialized head. While the vertebrate head mesoderm is unsegmented, the paraxial mesoderm of the earliest divergent chordate clade, the cephalochordates (amphioxus), is fully segmented in somites. We have previously shown that fibroblast growth factor signalling controls the formation of the most anterior somites in amphioxus; therefore, unravelling the fibroblast growth factor signalling downstream effectors is of crucial importance to shed light on the evolutionary origin of vertebrate head muscles. By using a comparative RNA sequencing approach and genetic functional analyses, we show that several transcription factors, such as Six1/2, Pax3/7 and Zic, act in combination to ensure the formation of three different somite populations. Interestingly, these proteins are orthologous to key regulators of trunk, and not head, muscle formation in vertebrates. Contrary to prevailing thinking, our results suggest that the vertebrate head mesoderm is of visceral and not paraxial origin and support a multistep evolutionary scenario for the appearance of the unsegmented mesoderm of the vertebrates new ‘head’.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Expression of several candidate genes defined after RNA-seq data analysis in control and SU5402-treated embryos.
Fig. 2: ETV1/4/5, Six1/2 and Pax3/7 are key factors for the formation of amphioxus somites.
Fig. 3: Zic is a major actor for somite formation in amphioxus.
Fig. 4: Gene regulatory logic for somite formation in amphioxus and hypothesis for the evolutionary scenario underlying vertebrate head mesoderm origin.

Similar content being viewed by others

Data availability

Sequences for probe synthesis are available in Genbank (see Supplementary Table 1). RNA-seq data are available under Gene Expression Omnibus (GEO) accession no. GSE122245. The ATAC-seq data sets presented in this study were previously used in refs. 69,70 and are available under GEO accession no. GSE68737.

References

  1. von Goethe, J. W. in Zur Naturwissenschaft überhaupt, besonders zur Morphologie: Erfahrung, Betrachtung, Folgerung, durch Lebensereignisse verbunden (Cotta, 1820).

  2. Goodrich,E. S. Studies on the Structure & Development of Vertebrates. (Chicago University Press, 1986).

  3. Owen,R. The Principal Forms of the Skeleton and of the Teeth. (Blanchard & Lea, 1854).

  4. Kuratani, S., Horigome, N. & Hirano, S. Developmental morphology of the head mesoderm and reevaluation of segmental theories of the vertebrate head: evidence from embryos of an agnathan vertebrate, Lampetra japonica. Dev. Biol. 210, 381–400 (1999).

    Article  CAS  Google Scholar 

  5. Freund, R., Dörfler, D., Popp, W. & Wachtler, F. The metameric pattern of the head mesoderm—does it exist? Anat. Embryol. (Berl.) 193, 73–80 (1996).

    Article  CAS  Google Scholar 

  6. Bothe, I. & Dietrich, S. The molecular setup of the avian head mesoderm and its implication for craniofacial myogenesis. Dev. Dyn. 235, 2845–2860 (2006).

    Article  CAS  Google Scholar 

  7. Kuratani, S. & Adachi, N. What are head cavities? A history of studies on vertebrate head segmentation. Zool. Sci. 33, 213–228 (2016).

    Article  Google Scholar 

  8. Dequéant, M. L. & Pourquié, O. Segmental patterning of the vertebrate embryonic axis. Nat. Rev. Genet. 9, 370–382 (2008).

    Article  Google Scholar 

  9. Hubaud, A. & Pourquié, O. Signalling dynamics in vertebrate segmentation. Nat. Rev. Mol. Cell Biol. 15, 709–721 (2014).

    Article  CAS  Google Scholar 

  10. Yusuf, F. & Brand-Saberi, B. The eventful somite: patterning, fate determination and cell division in the somite. Anat. Embryol. (Berl.) 211, 21–30 (2006).

    Article  Google Scholar 

  11. Tzahor, E. Heart and craniofacial muscle development: a new developmental theme of distinct myogenic fields. Dev. Biol. 327, 273–279 (2009).

    Article  CAS  Google Scholar 

  12. Sambasivan, R., Kuratani, S. & Tajbakhsh, S. An eye on the head: the development and evolution of craniofacial muscles. Development 138, 2401–2415 (2011).

    Article  CAS  Google Scholar 

  13. Delsuc, F., Brinkmann, H., Chourrout, D. & Philippe, H. Tunicates and not cephalochordates are the closest living relatives of vertebrates. Nature 439, 965–968 (2006).

    Article  CAS  Google Scholar 

  14. Bertrand, S. & Escriva, H. Evolutionary crossroads in developmental biology: amphioxus. Development 138, 4819–4830 (2011).

    Article  CAS  Google Scholar 

  15. Holland, L. Z., Kene, M., Williams, N. A. & Holland, N. D. Sequence and embryonic expression of the amphioxus engrailed gene (AmphiEn): the metameric pattern of transcription resembles that of its segment-polarity homolog in Drosophila. Development 124, 1723–1732 (1997).

    CAS  PubMed  Google Scholar 

  16. Bertrand, S. et al. Amphioxus FGF signaling predicts the acquisition of vertebrate morphological traits. Proc. Natl Acad. Sci. USA 108, 9160–9165 (2011).

    Article  CAS  Google Scholar 

  17. Schubert, M., Holland, L. Z., Stokes, M. D. & Holland, N. D. Three amphioxus Wnt genes (AmphiWnt3, AmphiWnt5, and AmphiWnt6) associated with the tail bud: the evolution of somitogenesis in chordates. Dev. Biol. 240, 262–273 (2001).

    Article  CAS  Google Scholar 

  18. Bertrand, S. et al. Evolution of the role of RA and FGF signals in the control of somitogenesis in chordates. PLoS ONE 10, e0136587 (2015).

    Article  Google Scholar 

  19. Beaster-Jones, L. et al. Expression of somite segmentation genes in amphioxus: a clock without a wavefront? Dev. Genes Evol. 218, 599–611 (2008).

    Article  CAS  Google Scholar 

  20. Holland, P. W. H. Embryonic development of heads, skeletons and amphioxus: Edwin S. Goodrich revisited. Int. J. Dev. Biol. 44, 29–34 (2000).

    CAS  PubMed  Google Scholar 

  21. Gans, C. & Northcutt, R. G. Neural crest and the origin of vertebrates: a new head. Science 220, 268–273 (1983).

    Article  CAS  Google Scholar 

  22. Holland, L. Z., Holland, N. D. & Gilland, E. Amphioxus and the evolution of head segmentation. Integr. Comp. Biol. 48, 630–646 (2008).

    Article  Google Scholar 

  23. Kuratani, S. Is the vertebrate head segmented? Evolutionary and developmental considerations. Integr. Comp. Biol. 48, 647–657 (2008).

    Article  Google Scholar 

  24. Kuratani, S. & Schilling, T. Head segmentation in vertebrates. Integr. Comp. Biol. 48, 604–610 (2008).

    Article  Google Scholar 

  25. Northcutt, R. G. Historical hypotheses regarding segmentation of the vertebrate head. Integr. Comp. Biol. 48, 611–619 (2008).

    Article  Google Scholar 

  26. Onai, T., Adachi, N. & Kuratani, S. Metamerism in cephalochordates and the problem of the vertebrate head. Int. J. Dev. Biol. 61, 621–632 (2017).

    Article  Google Scholar 

  27. Raible, F. & Brand, M. Tight transcriptional control of the ETS domain factors Erm and Pea3 by Fgf signaling during early zebrafish development. Mech. Dev. 107, 105–117 (2001).

    Article  CAS  Google Scholar 

  28. Roehl, H. & Nüsslein-Volhard, C. Zebrafish pea3 and erm are general targets of FGF8 signaling. Curr. Biol. 11, 503–507 (2001).

    Article  CAS  Google Scholar 

  29. Buckingham, M. Gene regulatory networks and cell lineages that underlie the formation of skeletal muscle. Proc. Natl Acad. Sci. USA 114, 5830–5837 (2017).

    Article  CAS  Google Scholar 

  30. Sadowski, I., Ma, J., Triezenberg, S. & Ptashne, M. GAL4-VP16 is an unusually potent transcriptional activator. Nature 335, 563–564 (1988).

    Article  CAS  Google Scholar 

  31. Jaynes, J. B. & O’Farrell, P. H. Active repression of transcription by the engrailed homeodomain protein. EMBO J. 10, 1427–1433 (1991).

    Article  CAS  Google Scholar 

  32. Khan, A. et al. JASPAR 2018: update of the open-access database of transcription factor binding profiles and its web framework. Nucleic Acids Res. 46, D1284 (2018).

    Article  Google Scholar 

  33. Feng, J., Li, G., Liu, X., Wang, J. & Wang, Y. Q. Functional analysis of the promoter region of amphioxus β-actin gene: a useful tool for driving gene expression in vivo. Mol. Biol. Rep. 41, 6817–6826 (2014).

    Article  CAS  Google Scholar 

  34. Pais-de-Azevedo, T., Magno, R., Duarte, I. & Palmeirim, I. Recent advances in understanding vertebrate segmentation. F1000Res. 7, 97 (2018).

    Article  Google Scholar 

  35. Onai, T., Aramaki, T., Inomata, H., Hirai, T. & Kuratani, S. On the origin of vertebrate somites. Zoological Lett. 1, 33 (2015).

    Article  Google Scholar 

  36. Shih, H. P., Gross, M. K. & Kioussi, C. Expression pattern of the homeodomain transcription factor Pitx2 during muscle development. Gene Expr. Patterns 7, 441–451 (2007).

    Article  CAS  Google Scholar 

  37. Dastjerdi, A. et al. Tbx1 regulation of myogenic differentiation in the limb and cranial mesoderm. Dev. Dyn. 236, 353–363 (2007).

    Article  CAS  Google Scholar 

  38. Nogueira, J. M. et al. The emergence of Pax7-expressing muscle stem cells during vertebrate head muscle development. Front. Aging Neurosci. 7, 62 (2015).

    Article  Google Scholar 

  39. Guo, C. et al. A Tbx1-Six1/Eya1-Fgf8 genetic pathway controls mammalian cardiovascular and craniofacial morphogenesis. J. Clin. Invest. 121, 1585–1595 (2011).

    Article  CAS  Google Scholar 

  40. Lin, C. Y. et al. The transcription factor Six1a plays an essential role in the craniofacial myogenesis of zebrafish. Dev. Biol. 331, 152–166 (2009).

    Article  CAS  Google Scholar 

  41. Boorman, C. J. & Shimeld, S. M. Pitx homeobox genes in Ciona and amphioxus show left–right asymmetry is a conserved chordate character and define the ascidian adenohypophysis. Evol. Dev. 4, 354–365 (2002).

    Article  CAS  Google Scholar 

  42. Yasui, K., Zhang, S., Uemura, M. & Saiga, H. Left–right asymmetric expression of BbPtx, a Ptx-related gene, in a lancelet species and the developmental left-sidedness in deuterostomes. Development 127, 187–195 (2000).

    CAS  PubMed  Google Scholar 

  43. Li, G. et al. Cerberus–Nodal–Lefty–Pitx signaling cascade controls left–right asymmetry in amphioxus. Proc. Natl Acad. Sci. USA 114, 3684–3689 (2017).

    Article  CAS  Google Scholar 

  44. Mahadevan, N. R., Horton, A. C. & Gibson-Brown, J. J. Developmental expression of the amphioxus Tbx1/10 gene illuminates the evolution of vertebrate branchial arches and sclerotome. Dev. Genes Evol. 214, 559–566 (2004).

    Article  CAS  Google Scholar 

  45. Koop, D. et al. Roles of retinoic acid and Tbx1/10 in pharyngeal segmentation: amphioxus and the ancestral chordate condition. Evodevo 5, 36 (2014).

    Article  Google Scholar 

  46. Nandkishore, N., Vyas, B., Javali, A., Ghosh, S. & Sambasivan, R. Divergent early mesoderm specification underlies distinct head and trunk muscle programmes in vertebrates. Development 145, dev160945 (2018).

    Article  Google Scholar 

  47. Onimaru, K., Shoguchi, E., Kuratani, S. & Tanaka, M. Development and evolution of the lateral plate mesoderm: comparative analysis of amphioxus and lamprey with implications for the acquisition of paired fins. Dev. Biol. 359, 124–136 (2011).

    Article  CAS  Google Scholar 

  48. Holland, N. D. Formation of the initial kidney and mouth opening in larval amphioxus studied with serial blockface scanning electron microscopy (SBSEM). Evodevo 9, 16 (2018).

    Article  Google Scholar 

  49. Meulemans, D. & Bronner-Fraser, M. Insights from amphioxus into the evolution of vertebrate cartilage. PLoS ONE 2, e787 (2007).

    Article  Google Scholar 

  50. Mazet, F., Amemiya, C. T. & Shimeld, S. M. An ancient Fox gene cluster in bilaterian animals. Curr. Biol. 16, R314–R316 (2006).

    Article  CAS  Google Scholar 

  51. Pascual-Anaya, J. et al. The evolutionary origins of chordate hematopoiesis and vertebrate endothelia. Dev. Biol. 375, 182–192 (2013).

    Article  CAS  Google Scholar 

  52. Holland, N. D., Venkatesh, T. V., Holland, L. Z., Jacobs, D. K. & Bodmer, R. AmphiNk2-tin, an amphioxus homeobox gene expressed in myocardial progenitors: insights into evolution of the vertebrate heart. Dev. Biol. 255, 128–137 (2003).

    Article  CAS  Google Scholar 

  53. Belgacem, M. R., Escande, M. L., Escriva, H. & Bertrand, S. Amphioxus Tbx6/16 and Tbx20 embryonic expression patterns reveal ancestral functions in chordates. Gene Expr. Patterns 11, 239–243 (2011).

    Article  CAS  Google Scholar 

  54. Lescroart, F. et al. Clonal analysis reveals common lineage relationships between head muscles and second heart field derivatives in the mouse embryo. Development 137, 3269–3279 (2010).

    Article  CAS  Google Scholar 

  55. Tirosh-Finkel, L., Elhanany, H., Rinon, A. & Tzahor, E. Mesoderm progenitor cells of common origin contribute to the head musculature and the cardiac outflow tract. Development 133, 1943–1953 (2006).

    Article  CAS  Google Scholar 

  56. Stolfi, A. et al. Early chordate origins of the vertebrate second heart field. Science 329, 565–568 (2010).

    Article  CAS  Google Scholar 

  57. Wang, W., Razy-Krajka, F., Siu, E., Ketcham, A. & Christiaen, L. NK4 antagonizes Tbx1/10 to promote cardiac versus pharyngeal muscle fate in the ascidian second heart field. PLoS Biol. 11, e1001725 (2013).

    Article  Google Scholar 

  58. Diogo, R. et al. A new heart for a new head in vertebrate cardiopharyngeal evolution. Nature 520, 466–473 (2015).

    Article  CAS  Google Scholar 

  59. Tanaka, M. Developmental mechanism of limb field specification along the anterior–posterior axis during vertebrate evolution. J. Dev. Biol. 4, E18 (2016).

    Article  Google Scholar 

  60. Fuentes, M. et al. Insights into spawning behavior and development of the European amphioxus (Branchiostoma lanceolatum). J. Exp. Zool. B Mol. Dev. Evol. 308, 484–493 (2007).

    Article  Google Scholar 

  61. Fuentes, M. et al. Preliminary observations on the spawning conditions of the European amphioxus (Branchiostoma lanceolatum) in captivity. J. Exp. Zool. B Mol. Dev. Evol. 302, 384–391 (2004).

    Article  Google Scholar 

  62. Holland, L. Z. & Holland, N. D. Expression of AmphiHox-1 and AmphiPax-1 in amphioxus embryos treated with retinoic acid: insights into evolution and patterning of the chordate nerve cord and pharynx. Development 122, 1829–1838 (1996).

    CAS  PubMed  Google Scholar 

  63. Oulion, S., Bertrand, S., Belgacem, M. R., Le Petillon, Y. & Escriva, H. Sequencing and analysis of the Mediterranean amphioxus (Branchiostoma lanceolatum) transcriptome. PLoS ONE 7, e36554 (2012).

    Article  CAS  Google Scholar 

  64. Li, H. & Durbin, R. Fast and accurate long-read alignment with Burrows–Wheeler transform. Bioinformatics 26, 589–595 (2010).

    Article  Google Scholar 

  65. Anders, S. & Huber, W. Differential expression analysis for sequence count data. Genome Biol. 11, R106 (2010).

    Article  CAS  Google Scholar 

  66. Götz, S. et al. High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res. 36, 3420–3435 (2008).

    Article  Google Scholar 

  67. Somorjai, I., Bertrand, S., Camasses, A., Haguenauer, A. & Escriva, H. Evidence for stasis and not genetic piracy in developmental expression patterns of Branchiostoma lanceolatum and Branchiostoma floridae, two amphioxus species that have evolved independently over the course of 200 Myr. Dev. Genes Evol. 218, 703–713 (2008).

    Article  Google Scholar 

  68. Hirsinger, E.et al. Expression of fluorescent proteins in Branchiostoma lanceolatum by mRNA injection into unfertilized oocytes. J. Vis. Exp.52042 (2015).

  69. Yu, J. K., Holland, N. D. & Holland, L. Z. Tissue-specific expression of FoxD reporter constructs in amphioxus embryos. Dev. Biol. 274, 452–461 (2004).

    Article  CAS  Google Scholar 

  70. Acemel, R. D. et al. A single three-dimensional chromatin compartment in amphioxus indicates a stepwise evolution of vertebrate Hox bimodal regulation. Nat. Genet 48, 336–341 (2016).

    Article  CAS  Google Scholar 

  71. Marlétaz, F. et al. Amphioxus functional genomics and the origins of vertebrate gene regulation. Nature 564, 64–70 (2018).

    Article  Google Scholar 

  72. Buenrostro, J. D., Wu, B., Chang, H. Y. & Greenleaf, W. J. ATAC-seq: a method for assaying chromatin accessibility genome-wide. Curr. Protoc. Mol. Biol. 109, 21.29.1–21.29.9 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

The laboratory of H.E. was supported by the Centre national de la recherche scientifique and Agence nationale de la recherche (ANR) grant no. ANR-16-CE12-0008-01; S.B. was supported by the Institut Universitaire de France. D.A. holds a fellowship from Conicyt Becas Chile. J-L.G-S. was supported by the Spanish government (grant no. BFU2016-74961-P), the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant no. 740041) and the institutional grant Unidad de Excelencia María de Maeztu (no. MDM-2016-0687). I.M. was funded by an EMBO short-term fellowship (ASTF 377-2014) and by the Spanish Government with a Juan de la Cierva postdoctoral contract (JCI-2012-13495). H.E. and S.M. were supported by the ECOS-CONICYT C15S02 grant. We acknowledge the Mediterranean Amphioxus Genome Consortium for providing access to genomic and transcriptomic data before publication. We thank T. Takahashi for providing the Tol2 mRNA production plasmid. Confocal imaging was undertaken at the BIOPIC platform which belongs to the EMBRC-France infrastructure supported by ANR grant no. ANR-10-INBS-02.

Author information

Authors and Affiliations

Authors

Contributions

H.E. and S.B. conceptualized the study. H.E., S.B., J-L.G.-S. and S.M. devised the methodology. D.A., C.K., L.M., I.M., L.S., S.B. and H.E. carried out the investigations. C.K., J-L.G.-S. and S.M. managed the resources. D.A., S.B. and H.E. wrote the original manuscript draft. D.A., L.S., C.K., I.M., S.M., J-L.G.-S., H.E. and S.B. reviewed and edited the draft. H.E., S.B., J-L.G.-S. and S.M. supervised the study.

Corresponding authors

Correspondence to Stephanie Bertrand or Hector Escriva.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–6 and supplementary results

Reporting Summary

Supplementary Table 1

Gene information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aldea, D., Subirana, L., Keime, C. et al. Genetic regulation of amphioxus somitogenesis informs the evolution of the vertebrate head mesoderm. Nat Ecol Evol 3, 1233–1240 (2019). https://doi.org/10.1038/s41559-019-0933-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-019-0933-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing