Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Historical contingency shapes adaptive radiation in Antarctic fishes

An Author Correction to this article was published on 10 March 2020

This article has been updated

Abstract

Adaptive radiation illustrates links between ecological opportunity, natural selection and the generation of biodiversity. Central to adaptive radiation is the association between a diversifying lineage and the evolution of phenotypic variation that facilitates the use of new environments or resources. However, is not clear whether adaptive evolution or historical contingency is more important for the origin of key phenotypic traits in adaptive radiation. Here we use targeted sequencing of >250,000 loci across 46 species to examine hypotheses concerning the origin and diversification of key traits in the adaptive radiation of Antarctic notothenioid fishes. Contrary to expectations of adaptive evolution, we show that notothenioids experienced a punctuated burst of genomic diversification and evolved key skeletal modifications before the onset of polar conditions in the Southern Ocean. We show that diversifying selection in pathways associated with human skeletal dysplasias facilitates ecologically important variation in buoyancy among Antarctic notothenioid species, and demonstrate the sufficiency of altered trip11, col1a2 and col1a1a function in zebrafish (Danio rerio) to phenocopy skeletal reduction in Antarctic notothenioids. Rather than adaptation being driven by the cooling of the Antarctic, our results highlight the role of historical contingency in shaping the adaptive radiation of notothenioids. Understanding the historical and environmental context for the origin of key traits in adaptive radiations extends beyond reconstructing events that result in evolutionary innovation, as it also provides a context in forecasting the effects of climate change on the stability and evolvability of natural populations.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Punctuated elevation in genomic diversification before ecological change and adaptive radiation.
Fig. 2: Skeletal reduction occurs before the cryonotothenioid radiation.
Fig. 3: Skeletal genes under diversifying selection uncover genetic mechanisms regulating bone density.

Data availability

The sequencing data have been deposited in the NCBI database as Bioproject PRJNA531677. Assembled contig data have been deposited in the Zenodo repository (10.5281/zenodo.2628936).

Change history

  • 10 March 2020

    An amendment to this paper has been published and can be accessed via a link at the top of the paper.

References

  1. 1.

    Schluter, D. The Ecology of Adaptive Radiation (Oxford Univ. Press, 2000).

  2. 2.

    Chan, Y. F. et al. Adaptive evolution of pelvic reduction of a Pitx1 enhancer. Science 327, 302–306 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  3. 3.

    Santos, M. E. et al. The evolution of cichlid fish egg-spots is linked with a cis-regulatory change. Nat. Commun. 5, 5149 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  4. 4.

    Rabosky, D. L. Phylogenetic tests for evolutionary innovation: the problematic link between key innovations and exceptional diversification. Phil. Trans. R. Soc. B 372, 20160417 (2017).

    PubMed  Article  PubMed Central  Google Scholar 

  5. 5.

    Stroud, J. T. & Losos, J. B. Ecological opportunity and adaptive radiation. Annu. Rev. Ecol. Evol. Syst. 47, 507–532 (2016).

    Article  Google Scholar 

  6. 6.

    Losos, J. B. Lizards in an Evolutionary Tree: Ecology and Adaptive Radiation of Anoles (Univ. of California Press, 2009).

  7. 7.

    Gould, S. J. Wonderful Life: The Burgess Shale and the Nature of History (W. W. Norton & Co., 1989).

  8. 8.

    Gould, S. J. The Structure of Evolutionary Theory (Harvard Univ. Press, 2002).

  9. 9.

    Jablonski, D. Approaches to macroevolution: 1. General concepts and origin of variation. Evol. Biol. 44, 427–450 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  10. 10.

    Near, T. J. et al. Ancient climate change, antifreeze, and the evolutionary diversification of Antarctic fishes. Proc. Natl Acad. Sci. USA 109, 3434–3439 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  11. 11.

    Dornburg, A., Federman, S., Lamb, A. D., Jones, C. D. & Near, T. J. Cradles and museums of Antarctic teleost biodiversity. Nat. Ecol. Evol. 1, 1379–1384 (2017).

    PubMed  Article  PubMed Central  Google Scholar 

  12. 12.

    Eastman, J. T. Antarctic Fish Biology: Evolution in a Unique Environment (Academic Press, Inc., 1993).

  13. 13.

    DeVries, A. L. & Eastman, J. T. Lipid sacs as a buoyancy adaptation in an Antarctic fish. Nature 271, 352–353 (1978).

    Article  Google Scholar 

  14. 14.

    Eastman, J. T., Witmer, L. M., Ridgely, R. C. & Kuhn, K. L. Divergence in skeletal mass and bone morphology in Antarctic notothenioid fishes. J. Morphol. 275, 841–861 (2014).

    PubMed  Article  PubMed Central  Google Scholar 

  15. 15.

    Daane, J. M., Rohner, N., Konstantinidis, P., Djuranovic, S. & Harris, M. P. Parallelism and epistasis in skeletal evolution identified through use of phylogenomic mapping strategies. Mol. Biol. Evol. 33, 162–173 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  16. 16.

    Near, T. J., Parker, S. K. & Detrich, H. W. A genomic fossil reveals key steps in hemoglobin loss by the Antarctic icefishes. Mol. Biol. Evol. 23, 2008–2016 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  17. 17.

    Brawand, D. et al. The genomic substrate for adaptive radiation in African cichlid fish. Nature 513, 375–381 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  18. 18.

    Rabosky, D. L. Automatic detection of key innovations, rate shifts, and diversity-dependence on phylogenetic trees. PLoS ONE 9, e89543 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  19. 19.

    Gistelinck, C. et al. Zebrafish type I collagen mutants faithfully recapitulate human type I collagenopathies. Proc. Natl Acad. Sci. USA 115, E8037–E8046 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  20. 20.

    Van Dijk, F. S. & Sillence, D. O. Osteogenesis imperfecta: clinical diagnosis, nomenclature and severity assessment. Am. J. Med. Genet. A 164, 1470–1481 (2014).

    PubMed Central  Article  Google Scholar 

  21. 21.

    Albertson, R. C. et al. Molecular pedomorphism underlies craniofacial skeletal evolution in Antarctic notothenioid fishes. BMC Evol. Biol. 10, 4 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  22. 22.

    Witkos, T. M. & Lowe, M. The golgin family of coiled-coil tethering proteins. Front. Cell Dev. Biol. 3, 86 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  23. 23.

    Smits, P. et al. Lethal skeletal dysplasia in mice and humans lacking the golgin GMAP-210. N. Engl. J. Med. 362, 206–216 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. 24.

    Eastman, J. T. & McCune, A. R. Fishes on the Antarctic continental shelf: evolution of a marine species flock? J. Fish Biol. 57, 84–102 (2000).

    Google Scholar 

  25. 25.

    Chen, L., DeVries, A. & Cheng, C. Evolution of antifreeze glycoprotein gene from a trypsinogen gene in Antarctic notothenioid fish. Proc. Natl Acad. Sci. USA 94, 3811–3816 (1997).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  26. 26.

    Chen, Z. et al. Transcriptomic and genomic evolution under constant cold in Antarctic notothenioid fish. Proc. Natl Acad. Sci. USA 105, 12944–12949 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  27. 27.

    Chown, S. L. et al. The changing form of Antarctic biodiversity. Nature 522, 431–438 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  28. 28.

    Chown, S. L. et al. Antarctica and the strategic plan for biodiversity. PLoS Biol. 15, e2001656 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  29. 29.

    Bilyk, K. T., Vargas-Chacoff, L. & Cheng, C. H. C. Evolution in chronic cold: varied loss of cellular response to heat in Antarctic notothenioid fish. BMC Evol. Biol. 18, 143 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  30. 30.

    Shin, S. C. et al. The g enome sequence of the Antarctic bullhead notothen reveals evolutionary adaptations to a cold environment. Genome Biol. 15, 468 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  31. 31.

    Tine, M. et al. European sea bass genome and its variation provide insights into adaptation to euryhalinity and speciation. Nat. Commun. 5, 5770 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. 32.

    Herrero, J. et al. Ensembl comparative genomics resources. Database 2016, bav096 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  33. 33.

    Kozomara, A. & Griffiths-Jones, S. MiRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res. 39, D152–D157 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  34. 34.

    Dimitrieva, S. & Bucher, P. UCNEbase - a database of ultraconserved non-coding elements and genomic regulatory blocks. Nucleic Acids Res. 41, 101–109 (2013).

    Article  CAS  Google Scholar 

  35. 35.

    Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  36. 36.

    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  37. 37.

    Altschul, S., Gish, W. & Miller, W. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

    CAS  Article  Google Scholar 

  38. 38.

    Huang, X. CAP3: a DNA sequence assembly program. Genome Res. 9, 868–877 (1999).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  39. 39.

    Sedlazeck, F. J., Rescheneder, P. & Von Haeseler, A. NextGenMap: fast and accurate read mapping in highly polymorphic genomes. Bioinformatics 29, 2790–2791 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  40. 40.

    Katoh, K., Kuma, K., Toh, H. & Miyata, T. MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Res. 33, 511–518 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  41. 41.

    Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  42. 42.

    Robinson, J. T. et al. Integrative genome viewer. Nat. Biotechnol. 29, 24–26 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  43. 43.

    Henke, K. et al. Genetic screen for post-embryonic development in the zebrafish (Danio rerio): dominant mutations affecting adult form. Genetics 207, 609–623 (2017).

  44. 44.

    Nguyen, L. T., Schmidt, H. A., Von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  45. 45.

    Chen, K., Durand, D. & Farach-Colton, M. NOTUNG: a program for dating gene duplications and optimizing gene family trees. J. Comput. Biol. 7, 429–447 (2000).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  46. 46.

    Ranwez, V., Harispe, S., Delsuc, F. & Douzery, E. J. P. MACSE: multiple alignment of coding SEquences accounting for frameshifts and stop codons. PLoS ONE 6, e22594 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  47. 47.

    Sela, I., Ashkenazy, H., Katoh, K. & Pupko, T. GUIDANCE2: accurate detection of unreliable alignment regions accounting for the uncertainty of multiple parameters. Nucleic Acids Res. 43, W7–W14 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  48. 48.

    Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., Von Haeseler, A. & Jermiin, L. S. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  49. 49.

    Hoang, D. T., Chernomor, O., Von Haeseler, A., Minh, B. Q. & Vinh, L. S. UFBoot2: improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35, 518–522 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  50. 50.

    Kubatko, L. S. & Degnan, J. H. Inconsistency of phylogenetic estimates from concatenated data under coalescence. Syst. Biol. 56, 17–24 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  51. 51.

    Roch, S. & Steel, M. Likelihood-based tree reconstruction on a concatenation of aligned sequence data sets can be statistically inconsistent. Theor. Popul. Biol. 100, 56–62 (2015).

    Article  Google Scholar 

  52. 52.

    Zhang, C., Rabiee, M., Sayyari, E. & Mirarab, S. ASTRAL-III: polynomial time species tree reconstruction from partially resolved gene trees. BMC Bioinformatics 19, 15–30 (2018).

    Article  CAS  Google Scholar 

  53. 53.

    Sayyari, E. & Mirarab, S. Fast coalescent-based computation of local branch support from quartet frequencies. Mol. Biol. Evol. 33, 1654–1668 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  54. 54.

    Rabosky, D. L. et al. BAMMtools: an R package for the analysis of evolutionary dynamics on phylogenetic trees. Methods Ecol. Evol. 5, 701–707 (2014).

    Article  Google Scholar 

  55. 55.

    Bouckaert, R. et al. BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 10, e1003537 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  56. 56.

    Bouckaert, R. R. & Drummond, A. J. bModelTest: Bayesian phylogenetic site model averaging and model comparison. BMC Evol. Biol. 17, 42 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  57. 57.

    Drummond, A. J. & Suchard, M. A. Bayesian random local clocks, or one rate to rule them all. BMC Biol. 8, 114 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  58. 58.

    Near, T. J. et al. Identification of the notothenioid sister lineage illuminates the biogeographic history of an Antarctic adaptive radiation. BMC Evol. Biol. 15, 109 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  59. 59.

    Smith, M. D. et al. Less is more: an adaptive branch-site random effects model for efficient detection of episodic diversifying selection. Mol. Biol. Evol. 32, 1342–1353 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  60. 60.

    Kosakovsky Pond, S. L., Frost, S. D. W. & Muse, S. V. HyPhy: hypothesis testing using phylogenies. Bioinformatics 21, 676–679 (2005).

    Article  CAS  Google Scholar 

  61. 61.

    Pollard, K. S., Hubisz, M. J., Rosenbloom, K. R. & Siepel, A. Detection of nonneutral substitution rates on mammalian phylogenies. Genome Res. 20, 110–121 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  62. 62.

    Hubisz, M. J., Pollard, K. S. & Siepel, A. PHAST and RPHAST: phylogenetic analysis with space/time models. Brief. Bioinforma. 12, 41–51 (2011).

    CAS  Article  Google Scholar 

  63. 63.

    Kinsella, R. J. et al. Ensembl BioMarts: a hub for data retrieval across taxonomic space. Database 2011, bar030 (2011).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  64. 64.

    Köhler, S. et al. The human phenotype ontology in 2017. Nucleic Acids Res. 45, D865–D876 (2017).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  65. 65.

    Daub, J. T., Moretti, S., Davydov, I. I. & Excoffier, L. Detection of pathways affected by positive selection in primate lineages ancestral to humans. Mol. Biol. Evol. 34, 1391–1402 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  66. 66.

    Nüsslein-Volhard, C. & Dahm, R. Zebrafish: A Practical Approach (Oxford Univ. Press, 2002).

Download references

Acknowledgements

The authors thank E. Snay and L. Oberg in the Department of Nuclear Medicine and Molecular Imaging at Boston Children’s Hospital for assistance in computed tomography of adult specimens. This work was supported in part by American Heart Association Postdoctoral Fellowship (No. 17POST33660801) to J.M.D., the National Institutes of Health (NIH) (No. U01DE024434), the John Simon Guggenheim Fellowship and William F. Milton Fund awarded to M.P.H., and the National Science Foundation (NSF) (No. PLR-1444167 to H.W.D. and No. IOS-1755242 to A.D.), the Bingham Oceanographic Fund from the Peabody Museum of Natural History, and Yale University, as well as the Children’s Orthopaedic Surgery Foundation at Boston Children’s Hospital. This is contribution No. 389 from the Marine Science Center at Northeastern University.

Author information

Affiliations

Authors

Contributions

J.M.D., H.W.D. and M.P.H. conceived and designed the study. J.M.D., P.S. and M.B.H. performed the experiments. J.M.D., A.D., T.J.N., D.J.M., H.W.D. and M.P.H. analysed the data. J.M.D., A.D. and T.J.N. wrote the first drafts of the manuscript. All authors contributed to the writing of the final manuscript.

Corresponding authors

Correspondence to Jacob M. Daane or H. William Detrich III or Matthew P. Harris.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–13 and Supplementary Tables 1–11

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Daane, J.M., Dornburg, A., Smits, P. et al. Historical contingency shapes adaptive radiation in Antarctic fishes. Nat Ecol Evol 3, 1102–1109 (2019). https://doi.org/10.1038/s41559-019-0914-2

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing