Increased variation in numbers of presacral vertebrae in suspensory mammals


Restricted variation in numbers of presacral vertebrae in mammals is a classic example of evolutionary stasis. Cervical number is nearly invariable in most mammals, and numbers of thoracolumbar vertebrae are also highly conserved. A recent hypothesis posits that stasis in mammalian presacral count is due to stabilizing selection against the production of incomplete homeotic transformations at the lumbo-sacral border in fast-running mammals, while slower, ambulatory mammals more readily tolerate intermediate lumbar/sacral vertebrae. We test hypotheses of variation in presacral numbers of vertebrae based on running speed, positional behaviour and vertebral contribution to locomotion. We find support for the hypothesis that selection against changes in presacral vertebral number led to stasis in mammals that rely on dorsomobility of the spine during running and leaping, but our results are independent of running speed per se. Instead, we find that mammals adapted to dorsostability of the spine, such as those that engage in suspensory behaviour, demonstrate elevated variation in numbers of presacral vertebrae compared to dorsomobile mammals. We suggest that the evolution of dorsostability and reduced reliance on flexion and extension of the spine allowed for increased variation in numbers of presacral vertebrae, leading to departures from an otherwise stable evolutionary pattern.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Examples of intermediate lumbar/sacral vertebrae.
Fig. 2: The last three lumbar vertebrae and sacrum in two fast-running mammals.
Fig. 3: Ancestral state reconstruction of presacral vertebral numbers.

Data availability

The data analyzed in this study and related data are included in Supplementary Tables 1–3.


  1. 1.

    Williams, G. C. Natural Selection: Domains, Levels, and Challenges (Oxford University Press, 1992).

  2. 2.

    Hansen, T. F. & Houle, D. in Phenotypic Integration: Studying the Ecology and Evolution of Complex Phenotypes (eds Pigliucci, M. & Preston, K.) 130–150 (Oxford University Press, 2004).

  3. 3.

    Müller, J. et al. Homeotic effects, somitogenesis and the evolution of vertebral numbers in recent and fossil amniotes. Proc. Natl Acad. Sci. USA 107, 2118–2123 (2010).

  4. 4.

    Chen, M. & Luo, Z.-X. Postcranial skeleton of the Cretaceous mammal Akidolestes cifellii and its locomotor adaptations. J. Mamm. Evol. 20, 159–189 (2013).

  5. 5.

    Bi, S., Wang, Y., Guan, J., Sheng, X. & Meng, J. Three new Jurassic euharamiyidan species reinforce early divergence of mammals. Nature 514, 579–584 (2014).

  6. 6.

    Jones, K. E. et al. Fossils reveal the complex evolutionary history of the mammalian regionalized spine. Science 361, 1249–1252 (2018).

  7. 7.

    Galis, F. Why do almost all mammals have seven cervical vertebrae? Developmental constraints, Hox genes, and cancer. J. Exp. Zool. 285, 19–26 (1999).

  8. 8.

    Narita, Y. & Kuratani, S. Evolution of the vertebral formulae in mammals: a perspective on developmental constraints. J. Exp. Zool. 304B, 91–106 (2005).

  9. 9.

    Asher, R. J., Bennett, N. & Lehmann, T. The new framework for understanding placental mammal evolution. Bioessays 31, 853–864 (2009).

  10. 10.

    Baumel, J. J. & Witmer, L. M. in Handbook of Avian Anatomy: Nomina Anatomica Avium (eds Baumel, J. J. et al.) 45–132 (Nuttall Ornithologica Club, 1993).

  11. 11.

    Todd, T. W. Numerical significance in the thoracicolumbar vertebrae of the Mammalia. Anat. Rec. 24, 261–286 (1922).

  12. 12.

    Sánchez-Villagra, M. R., Narita, Y. & Kuratani, S. Thorcolumbar vertebral number: the first skeletal synapomorphy for afrotherian mammals. Syst. Biodivers. 5, 1–7 (2007).

  13. 13.

    Asher, R. J., Lin, K. H., Kardjilov, N. & Hautier, L. Variability and constraint in the mammalian vertebral column. J. Evol. Biol. 24, 1080–1090 (2011).

  14. 14.

    Buchholtz, E. A. Crossing the frontier: a hypothesis for the origins of meristic constraint in mammalian axial patterning. Zoology 117, 64–69 (2014).

  15. 15.

    Buchholtz, E. A. in From Clone to Bone: The Synergy of Morphological and Molecular Tools in Paleobiology (eds Asher, R. J. & Müller, J.) 230–253 (Cambridge Univ. Press, 2012).

  16. 16.

    Burke, A. C., Nelson, C. E., Morgan, B. A. & Tabin, C. Hox genes and the evolution of vertebrate axial morphology. Development 121, 333–346 (1995).

  17. 17.

    Wellik, D. M. Hox patterning of the vertebrate axial skeleton. Dev. Dyn. 236, 2454–2463 (2007).

  18. 18.

    Pilbeam, D. The anthropoid postcranial axial skeleton: comments on development, variation, and evolution. J. Exp. Zool. 302, 241–267 (2004).

  19. 19.

    Williams, S. A. Evolution of the Hominoid Vertebral Column. PhD thesis, Univ. of Illinois (2011).

  20. 20.

    Williams, S. A. Variation in anthropoid vertebral formulae: implications for homology and homoplasy in hominoid evolution. J. Exp. Zool. 318B, 134–147 (2012).

  21. 21.

    Bots, J. et al. Analysis of cervical ribs in a series of human fetuses. J. Anat. 219, 403–409 (2011).

  22. 22.

    Buchholtz, E. A. et al. Fixed cervical count and the origin of the mammalian diaphragm. Evol. Dev. 14, 399–411 (2012).

  23. 23.

    Varela-Lasheras, I. et al. Breaking evolutionary and pleiotropic constraints in mammals: on sloths, manatees and homeotic mutations. EvoDevo 2, 11 (2011).

  24. 24.

    Galis, F. et al. Extreme selection in humans against homeotic transformations of cervical vertebare. Evolution 60, 2643–2654 (2006).

  25. 25.

    ten Broek, C. M. A. et al. Evo-devo of the human vertebral column: on homeotic transformations, pathologies and prenatal selection. Evol. Biol. 39, 456–471 (2012).

  26. 26.

    Hirasawa, T. & Kuratani, S. A new scenario of the evolutionary derivation of the mammalian diaphragm from shoulder muscles. J. Anat. 222, 504–517 (2013).

  27. 27.

    Bramble, D. M. & Carrier, D. R. Running and breathing in mammals. Science 219, 251–256 (1983).

  28. 28.

    Carrier, D. R. The evolution of locomotor stamina in tetrapods: circumventing a mechanical constraint. Paleobiology 13, 326–341 (1987).

  29. 29.

    Bramble, D. M. Axial-appendicular dynamics and the integration of breathing and gait in mammals. Am. Zool. 29, 171–186 (1989).

  30. 30.

    Perry, S. F., Similowski, T., Klein, W. & Codd, J. R. The evolutionary origin of the mammalian diaphragm. Respir. Physiol. Neurobiol. 171, 1–16 (2010).

  31. 31.

    Ruben, J. A., Bennett, A. F. & Hisaw, F. L. Selective factors in the origin of the mammalian diaphragm. Paleobiology 13, 54–59 (1987).

  32. 32.

    Marechal, G., Goffart, M., Reznik, M. & Gerebtzoff, M. A. The striated muscles in a slow-mover, Perodicticus potto (Prosimii, Lorisidae, Lorisinae). Comp. Biochem. Physiol. 54A, 81–93 (1976).

  33. 33.

    Rommel, S. & Reynolds, J. E. Diaphragm structure and function in the Florida manatee (Trichechus manatus latirostris). Anat. Rec. 259, 41–51 (2000).

  34. 34.

    Galis, F. et al. Fast running restricts evolutionary change of the vertebral column in mammals. Proc. Natl Acad. Sci. USA 111, 11401–11406 (2014).

  35. 35.

    Rockwell, H., Evans, F. G. & Pheasant, H. C. The comparative morphology of the vertebrate spinal column. Its form as related to function. Relat. Funct. J. Morphol. 63, 87–117 (1938).

  36. 36.

    Slijper, E. J. Comparative biologic-anatomical investigations on the vertebral column and spinal musculature of mammals. Verh. Kon. Ned. Akad. Wet. 42, 1–128 (1946).

  37. 37.

    Schultz, A. H. Vertebral column and thorax. Primatologia 4, 1–66 (1961).

  38. 38.

    Shapiro, L. in Postcranial Adaptation in Nonhuman Primates (ed. Gebo, D. L.) 121–149 (Northern Illinois Univ. Press, 1993).

  39. 39.

    Boszczyk, B. M., Boszczyk, A. A. & Putz, R. Comparative and functional anatomy of the mammalian lumbar spine. Anat. Rec. 264, 157–168 (2001).

  40. 40.

    Argot, C. Functional-adaptive anatomy of the axial skeleton of some extant marsupials and the paleobiology of the Paleocene marsupials Mayulestes ferox and Pucadelphys andinus. J. Morphol. 255, 279–300 (2003).

  41. 41.

    Chen, X., Milne, N. & O’Higgins, P. Morphological variation of the thoracolumbar vertebrae in Macropodidae and its functional relevance. J. Morphol. 266, 167–181 (2005).

  42. 42.

    Nalley, T. K. & Grider-Potter, N. Functional analyses of the primate upper cervical vertebral column. J. Hum. Evol. 107, 19–35 (2017).

  43. 43.

    Shapiro, L. J. & Kemp, A. D. Functional and developmental influences on intraspecific variation in catarrhine vertebrae. Am. J. Phys. Anthropol. 168, 131–144 (2019).

  44. 44.

    Buchholtz, E. A. Vertebral osteology and swimming style in living and fossil whales (Order: Cetacea). J. Zool. (Lond.) 253, 175–190 (2001).

  45. 45.

    Pierce, S. E., Clack, J. A. & Hutchinson, J. R. Comparative axial morphology in pinnipeds and its correlation with aquatic locomotory behaviour. J. Anat. 219, 502–514 (2011).

  46. 46.

    Jones, K. E. Allometry of the Thoracolumbar Region in Running Mammals. PhD thesis, Johns Hopkins Univ. (2014).

  47. 47.

    Jones, K. E., Benitez, L., Angielczyk, K. D. & Pierce, S. E. Adaptation and constraint in the evolution of the mammalian backbone. BMC Evol. Biol. 18, 172 (2018).

  48. 48.

    Smith, J. M. & Savage, R. J. G. Some locomotory adaptations in mammals. Zool. J. Linn. Soc. 42, 603–622 (1955).

  49. 49.

    Hildebrand, M. Motions of the running cheetah and horse. J. Mammal. 40, 481–495 (1959).

  50. 50.

    Gambaryan, P. P. How Mammals Run (John Wiley and Sons, 1974).

  51. 51.

    Hurov, J. R. Terrestrial locomotion and back anatomy in vervets (Cercopithecus aethiops) and patas monkeys (Erythrocebus patas). Am. J. Primatol. 13, 297–311 (1987).

  52. 52.

    Schilling, N. & Hackert, R. Sagittal spine movements of small therian mammals during asymmetrical gaits. J. Exp. Biol. 209, 3925–3939 (2006).

  53. 53.

    Ripley, S. The leaping of langurs: a problem in the study of locomotor adaptation. Am. J. Phys. Anthropol. 26, 149–170 (1967).

  54. 54.

    Ward, C. V. Torso morphology and locomotion in Proconsul nyanzae. Am. J. Phys. Anthropol. 92, 291–328 (1993).

  55. 55.

    Jungers, W. L. in The Lesser Apes: Evolutionary and Behavioral Biology (eds. Preuschoft, H. et al.) 146–169 (Edinburgh Univ. Press, 1984).

  56. 56.

    Halpert, A. P., Jenkins, F. A. & Franks, H. Structure and scaling of the lumbar vertebrae in African bovids (Mammalia: Artiodactyla). J. Zool. (Lond.) 211, 239–258 (1987).

  57. 57.

    Gaudin, T. J. & Biewener, A. A. The functional morphology of xenarthrous vertebrae in the armadillo Dasypus novemcinctus (Mammalia, Xenarthra). J. Morphol. 214, 63–81 (1992).

  58. 58.

    Filler, A. G. Homeotic evolution in the Mammalia: diversification of therian axial seriation and the morphogenetic basis of human origins. PLoS ONE 10, e1019 (2007).

  59. 59.

    Lovejoy, C. O. & McCollum, M. A. Spinopelvic pathways to bipedality: why no hominids ever relied on a bent-hip-bent-knee gait. Philos. Trans. R. Soc. B 365, 3289–3299 (2010).

  60. 60.

    Williams, S. A. Placement of the diaphragmatic vertebra in catarrhines: implications for the evolution of dorsostability in hominois and bipedalism in hominins. Am. J. Phys. Anthropol. 148, 111–122 (2012).

  61. 61.

    Jones, K. E. Evolutionary allometry of lumbar shape in Felidae and Bovidae. Biol. J. Linn. Soc. Lond. 116, 721–740 (2015).

  62. 62.

    Jones, K. E. New insights on equid locomotor evolution from the lumbar region of fossil horses. Proc. R. Soc. B 283, 20152947 (2016).

  63. 63.

    Russo, G. A. & Williams, S. A. Giant pandas (Carnivora: Ailuropoda melanoleuca) and living hominoids converge on lumbar vertebral adaptations to orthograde trunk posture. J. Hum. Evol. 88, 160–179 (2015).

  64. 64.

    Williams, S. A. & Russo, G. A. Evolution of the hominoid vertebral column: the long and the short of it. Evol. Anthropol. 24, 15–32 (2015).

  65. 65.

    Machnicki, A. L., Spurlock, L. B., Strier, K. B., Reno, P. L. & Lovejoy, C. O. First steps of bipedality in hominids: evidence from the atelid and proconsulid pelvis. PeerJ 4, e1521 (2016).

  66. 66.

    Haussler, K. K., Bertram, J. E. A., Gellman, K. & Hermanson, J. W. Segmental in vivo vertebral kinematics at the walk, trot and canter: a preliminary study. Equine Vet. J. 33, 160–164 (2001).

  67. 67.

    Johnson, S. E. & Shapiro, L. J. Positional behavior and vertebral morphology in atelines and cebines. Am. J. Phys. Anthropol. 105, 333–354 (1998).

  68. 68.

    Shapiro, L. Functional morphology of indrid lumbar vertebrae. Am. J. Phys. Anthropol. 98, 323–342 (1995).

  69. 69.

    Shapiro, L. J., Demes, B. & Cooper, J. Lateral bending of the lumbar spine during quadrupedalism in strepsirhines. J. Hum. Evol. 40, 231–259 (2001).

  70. 70.

    Shapiro, L. J. et al. Morphometric analysis of lumbar vertebrae in extinct Malagasy strepsirrhines. Am. J. Phys. Anthropol. 128, 823–839 (2005).

  71. 71.

    Shapiro, L. J. & Simons, C. V. M. Functional aspects of strepsirrhine lumbar vertebral bodies and spinous processes. J. Hum. Evol. 42, 753–783 (2002).

  72. 72.

    Lovejoy, C. O. The natural history of human gait and posture Part 1. Spine and pelvis. Gait Posture 21, 95–112 (2005).

  73. 73.

    Cartmill, M. & Milton, K. The lorisiform wrist joint and the evolution of “brachiating” adaptations in the Hominoidea. Am. J. Phys. Anthropol. 47, 249–272 (1977).

  74. 74.

    Granatosky, M. C., Lemelin, P., Chester, S. G. B., Pampush, J. D. & Schmitt, D. Functional and evolutionary aspects of axial stability in euarchontans and other mammals. J. Morphol. 275, 313–327 (2014).

  75. 75.

    Granatosky, M. C., Miller, C. E., Boyer, D. M. & Schmitt, D. Lumbar vertebral morphology of flying, gliding, and suspensory mammals: implications for the locomotor behavior of the subfossil lemurs Palaeopropithecus and Babakotia. J. Hum. Evol. 75, 40–52 (2014).

  76. 76.

    Gebo, D. L. Locomotor diversity in prosimian primates. Am. J. Primatol. 13, 271–281 (1987).

  77. 77.

    Keith, A. The extent to which the posterior segments of the body have been transmuted and suppressed in the evolution of man and allied primates. J. Anat. Physiol. 37, 18–40 (1902).

  78. 78.

    Abitbol, M. M. Evolution of the sacrum in hominoids. Am. J. Phys. Anthropol. 74, 65–81 (1987).

  79. 79.

    Buchholtz, E. A. & Stepien, C. C. Anatomical transformation in mammals: developmental origin of aberrant cervical anatomy in tree sloths. Evol. Dev. 11, 69–79 (2009).

  80. 80.

    Buchholtz, E. A., Booth, A. C. & Webbink, K. E. Vertebral anatomy in the Florida manatee, Trichechus manatus latirostris: a developmental and evolutionary analysis. Anat. Rec. 290, 624–637 (2007).

  81. 81.

    Buchholtz, E. A., Wayrynen, K. L. & Lin, I. W. Breaking constraint: axial patterning in Trichechus (Mammalia: Siernia). Evol. Dev. 16, 382–393 (2014).

  82. 82.

    Oliver, J. D., Jones, K. E., Hautier, L., Loughry, W. J. & Pierce, S. E. Vertebral bending mechanics and xenarthrous morphology in the nin-banded armadillo (Dasypus novemcinctus). J. Exp. Biol. 219, 2991–3002 (2016).

  83. 83.

    Gaudin, T. J. & Nyakatura, J. A. Epaxial musculature in armadillos, sloths, and opossums: functional significance and implications for the evolution of back muscles in the Xenarthra. J. Mamm. Evol. 25, 565–572 (2018).

  84. 84.

    Cullinane, D. M. & Aleper, D. The functional and biomechanical modifications of the spine of Scutisorex somereni, the hero shrew: spinal musculature. J. Zool. (Lond.) 244, 453–458 (1998).

  85. 85.

    Cullinane, D. M., Aleper, D. & Bertram, J. E. A. The functional and biomechanical modifications of the spine of Scutisorex somereni, the hero shrew: skeletal scaling relationships. J. Zool. (Lond.) 244, 447–452 (1998).

  86. 86.

    Cullinane, D. M. & Bertram, J. E. A. The mechanical behaviour of a novel mammalian intervertebral joint. J. Anat. 197, 627–634 (2000).

  87. 87.

    Stanley, W. T. et al. A new hero emerges: another exceptional mammalian spine and its potential adaptive significance. Biol. Lett. 9, 20130486 (2013).

  88. 88.

    Buchholtz, E. A. & Schur, S. A. Vertebral osteology in Delphinidae (Cetacea). Zool. J. Linn. Soc. 140, 383–401 (2004).

  89. 89.

    Gaudioso, P. J., Diaz, M. M. & Barquez, R. M. Morphology of the axial skeleton of seven bat genera (Chiroptera: Phyllostomidae). An. Acad. Bras. Cienc. 89, 2341–2358 (2017).

  90. 90.

    Reumer, J. W. F., ten Broek, C. M. A. & Galis, F. Extraordinary incidence of cervical ribs indicates vulnerable condition in Late Pleistocene mammoths. PeerJ 2, e318 (2014).

  91. 91.

    Buchholtz, E. A. Modular evolution of the cetacean vertebral column. Evol. Dev. 9, 278–289 (2007).

  92. 92.

    Hautier, L., Weisbecker, V., Sánchez-Villagra, M. R., Goswami, A. & Asher, R. J. Skeletal development in sloths and the evolution of mammalian vertebral patterning. Proc. Natl Acad. Sci. USA 107, 18903–18908 (2010).

  93. 93.

    Washburn, S. L. in Classification and Human Evolution (ed. Washburn, S. L.) 190–203 (Aldine, 1963).

  94. 94.

    Russo, G. A. Prezygapophyseal articular facet shape in the catarrhine thoracolumbar vertebral column. Am. J. Phys. Anthropol. 142, 600–612 (2010).

  95. 95.

    Williams, S. A. et al. The vertebral column of Australopithecus sediba. Science 340, 1232996 (2013).

  96. 96.

    Williams, S. A., Middleton, E. R., Villamil, C. I. & Shattuck, M. R. Vertebral numbers and human evolution. Yearb. Phys. Anthropol. 159, S19–S36 (2016).

  97. 97.

    Buchholtz, E. A. Vertebral and rib anatomy in Caperea marginata: implications for evolutionary patterning of the mammalian vertebral column. Mar. Mamm. Sci. 27, 382–397 (2011).

  98. 98.

    Mikawa, S. et al. Fine mapping of a swine quantitative trait locus for number of vertebrae and analysis of an orphan nuclear receptor, germ cell nuclear factor (NR6A1/GCNF). Genome Res. 14, 1–8 (2007).

  99. 99.

    Agresti, A. & Agresti, B. F. Statistical analysis of qualitative variation. Soc. Method 9, 204–237 (1978).

  100. 100.

    Christiansen, P. Locomotion in terrestrial mammals: the influence of body mass, limb length and bone proportions on speed. Zool. J. Linn. Soc. 136, 685–714 (2002).

  101. 101.

    Iriarte-Díaz, J. Differential scaling of locomotor performance in small and large terrestrial mammals. J. Exp. Biol. 205, 2897–2908 (2002).

  102. 102.

    Lovegrove, B. G. & Mowoe, M. O. The evolution of micro-cursoriality in mammals. J. Exp. Biol. 217, 1316–1325 (2014).

  103. 103.

    Bininda-Emonds, O. R. P. et al. The delayed rise of present-day mammals. Nature 446, 507–512 (2007).

  104. 104.

    Garland, T., Dickerman, A. W., Janis, C. M. & Jones, J. A. Phylogenetic analysis of covariance by computer simluation. Syst. Biol. 43, 265–292 (1993).

  105. 105.

    Nowak, R. M. Walker’s Mammals of the World 5th edn (Johns Hopkins Univ. Press, 1991).

  106. 106.

    Hildebrand, M. & Goslow, G. Analysis of Vertebrate Structure 5th edn (Wiley, 2001).

  107. 107.

    Hutchins, M. Grzimek’s Animal Life Encyclopedia (Gale, 2003).

  108. 108.

    Rowe, N.& Myers, M. All the World’s Primates (Pongonias Press, 2016).

  109. 109.

    Cant, J. G. H. Locomotion and feeding postures of spider and howling monkeys: field study and evolutionary interpretation. Folia Primatol. 46, 1–14 (1986).

  110. 110.

    Stern, J. T. Before bipedality. Yearb. Phys. Anthropol. 19, 59–68 (1975).

  111. 111.

    Keith, A. The Construction of Man’s Family Tree (Watts and Co., 1934).

  112. 112.

    Granatosky, M. C. & Schmitt, D. Forelimb and hind limb loading patterns during below branch quadrupedal locomotion in the two-toed sloth. J. Zool. 302, 271–278 (2017).

  113. 113.

    Nyakatura, J. A. The convergent evolution of suspensory posture and locomotion in tree sloths. J. Mamm. Evol. 19, 225–234 (2012).

  114. 114.

    Grand, T. I. & Barboza, P. S. Anatomy and development of the koala, Phascolarctos cinereus: an evolutionary perspective on the superfamily Vombatoidea. Anat. Embryol. (Berl.) 2001, 211–223 (2001).

  115. 115.

    Spoor, C. F. & Badoux, D. M. Descriptive and functional mylolgy of the back and hindlimb of the striped hyena (Hyaena hyaena, L. 1758). Ann. Anat. 167, 313–321 (1988).

  116. 116.

    Davis, D. D. The giant panda: a morpholocial study of evolutionary mechanisms. FieldianaZool. Mem. 3, 1–339 (1964).

  117. 117.

    Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).

Download references


We thank E. Buchholtz and D. Pilbeam for generously sharing data; F. Galis for providing species information from her and her colleagues’ study; M. Grabowski for statistical advice; and N. Duncan, G. Garcia, E. Hoeger, S. Ketelsen, A. Marcato, B. O’Toole, M. Surovy, E. Westwig (American Museum of Natural History), M. Milella, M. Ponce de León, C. Zollikofer (Anthropological Institute and Museum, University of Zurich), Y. Haile-Selassie, L. Jellema (Cleveland Museum of Natural History), H. Taboada (Department of Anthropology, New York University), D. Katz, T. Weaver (Department of Anthropology, University of California, Davis), B. Patterson, A. Goldman, M. Schulenberg, L. Smith, W. Stanley (Field Museum of Natural History), C. McCaffery, D. Reed (Florida Museum of Natural History, University of Florida), J. Chupasko, J. Harrison, M. Omura (Harvard Museum of Comparative Zoology), E. Gilissen, W. Wendelen (Musée Royal de l’Afrique Centrale), S. Jancke, N. Lange, F. Mayer (Musée für Naturkunde, Berlin), C. Conroy (Museum of Vertebrate Zoology, University of California, Berkeley), L. Gordon, K. Helgen, E. Langan, D. Lunde, J. Ososky, R. Thorington (National Museum of Natural History, Smithsonian Institution), J. Soderberg, M. Tappen (Neil C. Tappen Collection, Universtity of Minnesota), S. Bruaux, G. Lenglet (Royal Belgian Institute of Natural Sciences) and M. Hiermeier (Zoologische Staatssammlung München) for facilitating access to specimens in their care. S.A.W. was funded through the National Science Foundation (No. BCS-0925734), the Leakey Foundation (No. 33517) and the New York University Research Challenge Fund.

Author information

S.A.W., J.K.S. and M.R.S. conceived and designed the study. S.A.W., J.K.S., A.B.L. and M.R.S. analysed the data. S.A.W., J.K.S., L.P. and M.R.S. wrote the manuscript. All authors collected data, edited the manuscript and gave final approval for publication.

Correspondence to Scott A. Williams.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Tables 1–3

Taxa, morphological heterogeneity indices, sample sizes, vertebral number data and categories for phylogenetic ANOVA analyses; Raw data used in PGLS analyses; Results of PGLS analyses

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Williams, S.A., Spear, J.K., Petrullo, L. et al. Increased variation in numbers of presacral vertebrae in suspensory mammals. Nat Ecol Evol 3, 949–956 (2019).

Download citation