Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Evolutionary and demographic consequences of phenological mismatches

Abstract

Climate change has often led to unequal shifts in the seasonal timing (phenology) of interacting species, such as consumers and their resource, leading to phenological ‘mismatches’. Mismatches occur when the time at which a consumer species’s demands for a resource are high does not match with the period when this resource is abundant. Here, we review the evolutionary and population-level consequences of such mismatches and how these depend on other ecological factors, such as additional drivers of selection and density-dependent recruitment. This review puts the research on phenological mismatches into a conceptual framework, applies this framework beyond consumer–resource interactions and illustrates this framework using examples drawn from the vast body of literature on mismatches. Finally, we point out priority questions for research on this key impact of climate change.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Definitions of mismatch and mistiming.
Fig. 2: Optimal mismatches are caused by multiple fitness components of phenology.
Fig. 3: Relationships between mismatch and reproductive success at the individual and population level.

Similar content being viewed by others

References

  1. Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42 (2003).

    CAS  PubMed  Google Scholar 

  2. Root, T. L. et al. Fingerprints of global warming on wild animals and plants. Nature 421, 57–60 (2003).

    CAS  PubMed  Google Scholar 

  3. Kharouba, H. M. et al. Global shifts in the phenological synchrony of species interactions over recent decades. Proc. Natl Acad. Sci. USA 115, 5211–5216 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Visser, M. E. & Both, C. Shifts in phenology due to global climate change: the need for a yardstick. Proc. R. Soc. Lond. B Biol. Sci. 272, 2561–2569 (2005).

    Google Scholar 

  5. Thackeray, S. J. et al. Phenological sensitivity to climate across taxa and trophic levels. Nature 535, 241–245 (2016).

    CAS  PubMed  Google Scholar 

  6. Hjort, J. Fluctuations in the Great Fisheries of Northern Europe Viewed in the Light of Biological Research (ICES, 1914).

  7. Cushing, D. H. Regularity of spawning season of some fishes. ICES J. Mar. Sci. 33, 81–92 (1969).

    Google Scholar 

  8. Visser, M. E., van Noordwijk, A. J., Tinbergen, J. M. & Lessells, C. M. Warmer springs lead to mistimed reproduction in great tits (Parus major). Proc. Biol. Sci. 265, 1867–1870 (1998).

    PubMed Central  Google Scholar 

  9. Stenseth, N. C. & Mysterud, A. Climate, changing phenology, and other life history traits: nonlinearity and match-mismatch to the environment. Proc. Natl Acad. Sci. USA 99, 13379–13381 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Harrington, R., Woiwod, I. & Sparks, T. Climate change and trophic interactions. Trends Ecol. Evol. 14, 146–150 (1999).

    CAS  PubMed  Google Scholar 

  11. Durant, J. M., Hjermann, D. O., Ottersen, G. & Stenseth, N. C. Climate and the match or mismatch between predator requirements and resource availability. Clim. Res. 33, 271–283 (2007).

    Google Scholar 

  12. Miller-Rushing, A. J., Høye, T. T., Inouye, D. W. & Post, E. The effects of phenological mismatches on demography. Philos. Trans. R. Soc. Lond. B Biol. Sci. 365, 3177–3186 (2010).

    PubMed  PubMed Central  Google Scholar 

  13. Lindén, A. Adaptive and nonadaptive changes in phenological synchrony. Proc. Natl Acad. Sci. USA 115, 5057–5059 (2018).

    PubMed  PubMed Central  Google Scholar 

  14. Singer, M. C. & Parmesan, C. Phenological asynchrony between herbivorous insects and their hosts: signal of climate change or pre-existing adaptive strategy? Philos. Trans. R. Soc. Lond. B Biol. Sci. 365, 3161–3176 (2010).

    PubMed  PubMed Central  Google Scholar 

  15. Thackeray, S. J. et al. Trophic level asynchrony in rates of phenological change for marine, freshwater and terrestrial environments. Glob. Change Biol. 16, 3304–3313 (2010).

    Google Scholar 

  16. Visser, M. E. & Holleman, L. J. M. Warmer springs disrupt the synchrony of oak and winter moth phenology. Proc. Biol. Sci. 268, 289–294 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Hegland, S. J., Nielsen, A., Lázaro, A., Bjerknes, A.-L. & Totland, Ø. How does climate warming affect plant-pollinator interactions? Ecol. Lett. 12, 184–195 (2009).

    PubMed  Google Scholar 

  18. Paull, S. H. & Johnson, P. T. J. Experimental warming drives a seasonal shift in the timing of host-parasite dynamics with consequences for disease risk. Ecol. Lett. 17, 445–453 (2014).

    PubMed  Google Scholar 

  19. Stenseth, N. C. et al. Testing for effects of climate change on competitive relationships and coexistence between two bird species. Proc. Biol. Sci. 282, 20141958 (2015).

    PubMed  PubMed Central  Google Scholar 

  20. Bradshaw, A. D. Evolutionary significance of phenotypic plasticity in plants. Adv. Genet. 13, 115–155 (1965).

    Google Scholar 

  21. Pigliucci, M. Evolution of phenotypic plasticity: where are we going now? Trends Ecol. Evol. 20, 481–486 (2005).

    PubMed  Google Scholar 

  22. McNamara, J. M., Barta, Z., Klaassen, M. & Bauer, S. Cues and the optimal timing of activities under environmental changes. Ecol. Lett. 14, 1183–1190 (2011).

    PubMed  PubMed Central  Google Scholar 

  23. Gwinner, E. Circannual Rhythms (Springer-Verlag, 1986).

  24. Zann, R. A., Morton, S. R., Jones, K. R. & Burley, N. T. The timing of breeding by Zebra finches in relation to rainfall in Central Australia. Emu 95, 208–222 (1995).

    Google Scholar 

  25. Korn, H. & Taitt, M. J. Initiation of early breeding in a population of Microtus townsendii (Rodentia) with the secondary plant compound 6-MBOA. Oecologia 71, 593–596 (1987).

    CAS  PubMed  Google Scholar 

  26. Edwards, M. & Richardson, A. J. Impact of climate change on marine pelagic phenology and trophic mismatch. Nature 430, 881–884 (2004).

    CAS  PubMed  Google Scholar 

  27. Jonsson, T. & Setzer, M. A freshwater predator hit twice by the effects of warming across trophic levels. Nat. Commun. 6, 5992 (2015).

    CAS  PubMed  Google Scholar 

  28. Ovaskainen, O. et al. Community-level phenological response to climate change. Proc. Natl Acad. Sci. USA 110, 13434–13439 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Vose, R. S., Easterling, D. R. & Gleason, B. Maximum and minimum temperature trends for the globe: an update through 2004. Geophys. Res. Lett. 32, L23822 (2005).

    Google Scholar 

  30. Gienapp, P., Reed, T. E. & Visser, M. E. Why climate change will invariably alter selection pressures on phenology. Proc. Biol. Sci. 281, 20141611 (2014).

    PubMed  PubMed Central  Google Scholar 

  31. Visser, M. E., Both, C. & Lambrechts, M. M. Global climate change leads to mistimed avian reproduction. Adv. Ecol. Res. 35, 89–110 (2004).

    Google Scholar 

  32. Renner, S. S. & Zohner, C. M. Climate change and phenological mismatch in trophic interactions among plants, insects, and vertebrates. Annu. Rev. Ecol. Evol. Syst. 49, 165–182 (2018).

    Google Scholar 

  33. Arlt, D. & Pärt, T. Marked reduction in demographic rates and reduced fitness advantage for early breeding is not linked to reduced thermal matching of breeding time. Ecol. Evol. 7, 10782–10796 (2017).

    PubMed  PubMed Central  Google Scholar 

  34. Bowers, E. K. et al. Spring temperatures influence selection on breeding date and the potential for phenological mismatch in a migratory bird. Ecology 97, 2880–2891 (2016).

    PubMed  Google Scholar 

  35. Wesolowski, T. & Rowinski, P. Do blue tits Cyanistes caeruleus synchronize reproduction with caterpillar peaks in a primeval forest? Bird Study 61, 231–245 (2014).

    Google Scholar 

  36. Reed, T. E., Jenouvrier, S. & Visser, M. E. Phenological mismatch strongly affects individual fitness but not population demography in a woodland passerine. J. Anim. Ecol. 82, 131–144 (2013).

    PubMed  Google Scholar 

  37. Marrot, P., Charmantier, A., Blondel, J. & Garant, D. Current spring warming as a driver of selection on reproductive timing in a wild passerine. J. Anim. Ecol. 87, 754–764 (2018).

    PubMed  PubMed Central  Google Scholar 

  38. Visser, M. E., Te Marvelde, L. & Lof, M. Adaptive phenological mismatches of birds and their food in a warming world. J. Ornithol. 153, S75–S84 (2012).

    Google Scholar 

  39. Brown, C. R. & Brown, M. B. Weather-mediated natural selection on arrival time in cliff swallows (Petrochelidon pyrrhonota). Behav. Ecol. Sociobiol. 47, 339–345 (2000).

    Google Scholar 

  40. Lof, M. E., Reed, T. E., McNamara, J. M. & Visser, M. E. Timing in a fluctuating environment: environmental variability and asymmetric fitness curves can lead to adaptively mismatched avian reproduction. Proc. Biol. Sci. 279, 3161–3169 (2012).

    PubMed  PubMed Central  Google Scholar 

  41. Ruel, J. J. & Ayres, M. P. Jensen’s inequality predicts effects of environmental variation. Trends Ecol. Evol. 14, 361–366 (1999).

    CAS  PubMed  Google Scholar 

  42. Martin, T. L. & Huey, R. B. Why “suboptimal” is optimal: Jensen’s inequality and ectotherm thermal preferences. Am. Nat. 171, E102–E118 (2008).

    PubMed  Google Scholar 

  43. Jonzén, N., Hedenström, A. & Lundberg, P. Climate change and the optimal arrival of migratory birds. Proc. Biol. Sci. 274, 269–274 (2007).

    PubMed  Google Scholar 

  44. Johansson, J. & Jonzén, N. Effects of territory competition and climate change on timing of arrival to breeding grounds: a game-theory approach. Am. Nat. 179, 463–474 (2012).

    PubMed  Google Scholar 

  45. Stevenson, I. R. & Bryant, D. M. Climate change and constraints on breeding. Nature 406, 366–367 (2000).

    CAS  PubMed  Google Scholar 

  46. te Marvelde, L., Webber, S. L., Meijer, H. A. J. & Visser, M. E. Energy expenditure during egg laying is equal for early and late breeding free-living female great tits. Oecologia 168, 631–638 (2012).

    Google Scholar 

  47. Johansson, J., Kristensen, N. P., Nilsson, J. A. & Jonzen, N. The eco-evolutionary consequences of interspecific phenological asynchrony — a theoretical perspective. Oikos 124, 102–112 (2015).

    Google Scholar 

  48. Gienapp, P., Teplitsky, C., Alho, J. S., Mills, J. A. & Merilä, J. Climate change and evolution: disentangling environmental and genetic responses. Mol. Ecol. 17, 167–178 (2008).

    CAS  PubMed  Google Scholar 

  49. van Asch, M., Salis, L., Holleman, L. J. M., van Lith, B. & Visser, M. E. Evolutionary response of the egg hatching date of a herbivorous insect under climate change. Nat. Clim. Chang. 3, 244–248 (2013).

    Google Scholar 

  50. Reed, T. E., Grøtan, V., Jenouvrier, S., Sæther, B. E. & Visser, M. E. Population growth in a wild bird is buffered against phenological mismatch. Science 340, 488–491 (2013).

    CAS  PubMed  Google Scholar 

  51. Møller, A. P., Rubolini, D. & Lehikoinen, E. Populations of migratory bird species that did not show a phenological response to climate change are declining. Proc. Natl Acad. Sci. USA 105, 16195–16200 (2008).

    PubMed  PubMed Central  Google Scholar 

  52. Saino, N. et al. Climate warming, ecological mismatch at arrival and population decline in migratory birds. Proc. Biol. Sci. 278, 835–842 (2011).

    PubMed  Google Scholar 

  53. Doiron, M., Gauthier, G. & Lévesque, E. Trophic mismatch and its effects on the growth of young in an Arctic herbivore. Glob. Change Biol. 21, 4364–4376 (2015).

    Google Scholar 

  54. Saino, N. et al. Climate change effects on migration phenology may mismatch brood parasitic cuckoos and their hosts. Biol. Lett. 5, 539–541 (2009).

    PubMed  PubMed Central  Google Scholar 

  55. Plard, F. et al. Mismatch between birth date and vegetation phenology slows the demography of roe deer. PLoS Biol. 12, e1001828 (2014).

    PubMed  PubMed Central  Google Scholar 

  56. Ross, M. V., Alisauskas, R. T., Douglas, D. C. & Kellett, D. K. Decadal declines in avian herbivore reproduction: density-dependent nutrition and phenological mismatch in the Arctic. Ecology 98, 1869–1883 (2017).

    PubMed  Google Scholar 

  57. Post, E. & Forchhammer, M. C. Climate change reduces reproductive success of an Arctic herbivore through trophic mismatch. Philos. Trans. R. Soc. Lond. B Biol. Sci. 363, 2369–2375 (2008).

    PubMed  Google Scholar 

  58. Kristiansen, T., Drinkwater, K. F., Lough, R. G. & Sundby, S. Recruitment variability in North Atlantic cod and match–mismatch dynamics. PLoS One 6, e17456 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Regular, P.M. et al. Why timing is everything: energetic costs and reproductive consequences of resource mismatch for a chick-rearing seabird. Ecosphere 5, (2014).

    Google Scholar 

  60. Day, E. & Kokko, H. Relaxed selection when you least expect it: why declining bird populations might fail to respond to phenological mismatches. Oikos 124, 62–68 (2015).

    Google Scholar 

  61. Pelletier, F., Garant, D. & Hendry, A. P. Eco-evolutionary dynamics. Philos. Trans. R. Soc. Lond. B Biol. Sci. 364, 1483–1489 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Gienapp, P. et al. Genomic quantitative genetics to study evolution in the wild. Trends Ecol. Evol. 32, 897–908 (2017).

    PubMed  Google Scholar 

  63. Rudman, S. M. et al. What genomic data can reveal about eco-evolutionary dynamics. Nat. Ecol. Evol. 2, 9–15 (2018).

    PubMed  Google Scholar 

  64. Verhulst, S. & Nilsson, J. A. The timing of birds’ breeding seasons: a review of experiments that manipulated timing of breeding. Philos. Trans. R. Soc. Lond. B Biol. Sci. 363, 399–410 (2007).

    PubMed Central  Google Scholar 

  65. Rafferty, N. E. & Ives, A. R. Effects of experimental shifts in flowering phenology on plant-pollinator interactions. Ecol. Lett. 14, 69–74 (2011).

    PubMed  Google Scholar 

  66. Donnelly, A., Caffarra, A. & O’Neill, B. F. A review of climate-driven mismatches between interdependent phenophases in terrestrial and aquatic ecosystems. Int. J. Biometeorol. 55, 805–817 (2011).

    PubMed  Google Scholar 

  67. Beebee, T. J. C. Amphibian breeding and climate. Nature 374, 219–220 (1995).

    CAS  Google Scholar 

  68. Lehikoinen, A. Advanced autumn migration of sparrowhawk has increased the predation risk of long-distance migrants in Finland. PLoS One 6, e20001 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Bestion, E., García-Carreras, B., Schaum, C. E., Pawar, S. & Yvon-Durocher, G. Metabolic traits predict the effects of warming on phytoplankton competition. Ecol. Lett. 21, 655–664 (2018).

    PubMed  PubMed Central  Google Scholar 

  70. Robbirt, K. M., Roberts, D. L., Hutchings, M. J. & Davy, A. J. Potential disruption of pollination in a sexually deceptive orchid by climatic change. Curr. Biol. 24, 2845–2849 (2014).

    CAS  PubMed  Google Scholar 

  71. Martinez-Bakker, M. & Helm, B. The influence of biological rhythms on host-parasite interactions. Trends Ecol. Evol. 30, 314–326 (2015).

    PubMed  Google Scholar 

  72. Gehman, A. M., Hall, R. J. & Byers, J. E. Host and parasite thermal ecology jointly determine the effect of climate warming on epidemic dynamics. Proc. Natl Acad. Sci. USA 115, 744–749 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Santangeli, A. et al. Stronger response of farmland birds than farmers to climate change leads to the emergence of an ecological trap. Biol. Conserv. 217, 166–172 (2018).

    Google Scholar 

  74. Kelsey, K. C. et al. Phenological mismatch in coastal western Alaska may increase summer season greenhouse gas uptake. Environ. Res. Lett. 13, 044032 (2018).

    Google Scholar 

  75. CaraDonna, P. J., Iler, A. M. & Inouye, D. W. Shifts in flowering phenology reshape a subalpine plant community. Proc. Natl Acad. Sci. USA 111, 4916–4921 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Stevenson, T. J. et al. Disrupted seasonal biology impacts health, food security and ecosystems. Proc. Biol. Sci. 282, 20151453 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Nakazawa, T. & Doi, H. A perspective on match/mismatch of phenology in community contexts. Oikos 121, 489–495 (2012).

    Google Scholar 

  78. Revilla, T. A., Encinas-Viso, F. & Loreau, M. (A bit) Earlier or later is always better: phenological shifts in consumer–resource interactions. Theor. Ecol. 7, 149–162 (2014).

    Google Scholar 

  79. Memmott, J., Craze, P. G., Waser, N. M. & Price, M. V. Global warming and the disruption of plant–pollinator interactions. Ecol. Lett. 10, 710–717 (2007).

    PubMed  Google Scholar 

  80. Burkle, L. A., Marlin, J. C. & Knight, T. M. Plant–pollinator interactions over 120 years: loss of species, co-occurrence, and function. Science 339, 1611–1615 (2013).

    CAS  PubMed  Google Scholar 

  81. Encinas-Viso, F., Revilla, T. A. & Etienne, R. S. Phenology drives mutualistic network structure and diversity. Ecol. Lett. 15, 198–208 (2012).

    PubMed  Google Scholar 

  82. Revilla, T. A., Encinas-Viso, F. & Loreau, M. Robustness of mutualistic networks under phenological change and habitat destruction. Oikos 124, 22–32 (2015).

    Google Scholar 

  83. IPCC. Climate Change 2014: Synthesis Report (eds Core Writing Team, Pachauri, R. K. & Meyer, L. A.) (IPCC, 2014).

  84. Tomotani, B. M. et al. Climate change leads to differential shifts in the timing of annual cycle stages in a migratory bird. Glob. Change Biol. 24, 823–835 (2018).

    Google Scholar 

  85. Dawson, A. The effect of latitude on photoperiodic control of gonadal maturation, regression and molt in birds. Gen. Comp. Endocrinol. 190, 129–133 (2013).

    CAS  PubMed  Google Scholar 

  86. Carey, C. The impacts of climate change on the annual cycles of birds. Philos. Trans. R. Soc. Lond. B Biol. Sci. 364, 3321–3330 (2009).

    PubMed  PubMed Central  Google Scholar 

  87. Crozier, L. G. et al. Potential responses to climate change in organisms with complex life histories: evolution and plasticity in Pacific salmon. Evol. Appl. 1, 252–270 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Kristensen, N. P., Johansson, J., Ripa, J. & Jonzen, N. Phenology of two interdependent traits in migratory birds in response to climate change. Proc. Biol. Sci. 282, 20150288 (2015).

    PubMed  PubMed Central  Google Scholar 

  89. Both, C. & Visser, M. E. Adjustment to climate change is constrained by arrival date in a long-distance migrant bird. Nature 411, 296–298 (2001).

    CAS  PubMed  Google Scholar 

  90. Moyes, K. et al. Advancing breeding phenology in response to environmental change in a wild red deer population. Glob. Change Biol. 17, 2455–2469 (2011).

    Google Scholar 

Download references

Acknowledgements

We are grateful to B. Tomotani, J. Ramakers, I. Verhagen, W. Mooij, B. Helm and T. Reed for their comments on an earlier version of this paper, as well as J. Johansson for constructive review comments. This study was supported by an ERC Advanced Grant (339092 – E-Response to M.E.V.).

Author information

Authors and Affiliations

Authors

Contributions

M.E.V. and P.G. contributed to the conception of and wrote the manuscript. P.G. generated the figures.

Corresponding authors

Correspondence to Marcel E. Visser or Phillip Gienapp.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Visser, M.E., Gienapp, P. Evolutionary and demographic consequences of phenological mismatches. Nat Ecol Evol 3, 879–885 (2019). https://doi.org/10.1038/s41559-019-0880-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-019-0880-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing