Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

Assessing evolutionary risks of resistance for new antimicrobial therapies

New antibiotics are urgently needed to combat rising rates of resistance against all existing classes of antimicrobials. We highlight key issues that complicate the prediction of resistance evolution in the real world and outline the ways in which these can be overcome.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Real-world resistance.

References

  1. O’Neill, J. Tackling drug-resistant infections globally: final report and recommendations (ed. UK Department of Health) (HM Government, London, 2016).

  2. Ling, L. L. et al. Nature 517, 455–459 (2015).

    Article  CAS  Google Scholar 

  3. Smith, P. A. et al. Nature 561, 189–194 (2018).

    Article  CAS  Google Scholar 

  4. Pope, C. F., O’Sullivan, D. M., McHugh, T. D. & Gillespie, S. H. Antimicrob. Agents Chemother. 52, 1209–1214 (2008).

    Article  CAS  Google Scholar 

  5. MacLean, R. C., Hall, A. R., Perron, G. G. & Buckling, A. Nat. Rev. Genet. 11, 405–414 (2010).

    Article  CAS  Google Scholar 

  6. Opota, O., Croxatto, A., Prod’hom, G. & Greub, G. Clin. Microbiol. Infect. 21, 313–322 (2015).

    Article  CAS  Google Scholar 

  7. Wu, C. L., Yang, D. Ie, Wang, N. Y., Kuo, H. T. & Chen, P. Z. Chest 122, 662–668 (2002).

    Article  Google Scholar 

  8. Andersson, D. I. Clin. Microbiol. Infect. 21, 894–898 (2015).

    Article  CAS  Google Scholar 

  9. Conibear, T. C., Collins, S. L. & Webb, J. S. PLoS One 4, e6289 (2009).

    Article  Google Scholar 

  10. Schick, A. & Kassen, R. Proc. Natl Acad. Sci. USA 115, 10714–10719 (2018).

    Article  CAS  Google Scholar 

  11. Driffield, K., Miller, K., Bostock, J. M., O’Neill, A. J. & Chopra, I. J. Antimicrob. Chemother. 61, 1053–1056 (2008).

    Article  CAS  Google Scholar 

  12. Kubicek-Sutherland, J. Z. et al. EBioMedicine 2, 1169–1178 (2015).

    Article  Google Scholar 

  13. Bell, G. & Gouyon, P. H. Microbiology 149, 1367–1375 (2003).

    Article  CAS  Google Scholar 

  14. Harkins, C. P. et al. Genome Biol. 18, 130 (2017).

    Article  Google Scholar 

  15. Maier, L. et al. Nature 555, 623–628 (2018).

    Article  CAS  Google Scholar 

  16. Carey, D. E. & McNamara, P. J. Front. Microbiol. 5, 780 (2015).

    Article  Google Scholar 

  17. Webber, M. A. et al. J. Antimicrob. Chemother. 72, 2755–2763 (2017).

    Article  CAS  Google Scholar 

  18. Bradley, P., den Bakker, H., Rocha, E., McVean, G. & Iqbal, Z. Preprint at https://doi.org/10.1101/234955 (2017).

  19. Mullany, P. Virulence 5, 443–447 (2014).

    Article  Google Scholar 

  20. Allen, H. K., Moe, L. A., Rodbumrer, J., Gaarder, A. & Handelsman, J. ISME J. 3, 243–251 (2009).

    Article  CAS  Google Scholar 

  21. Torres-Cortés, G. et al. Environ. Microbiol. 13, 1101–1114 (2011).

    Article  Google Scholar 

  22. Moore, A. M., Munck, C., Sommer, M. O. & Dantas, G. Front. Microbiol. 2, 188 (2011).

    Article  Google Scholar 

  23. Wichmann, F., Udikovic-Kolic, N., Andrew, S. & Handelsman, J. MBio 5, e01017 (2014).

    PubMed  PubMed Central  Google Scholar 

  24. Partridge, S. R., Kwong, S. M., Firth, N. & Jensen, S. O. Clin. Microbiol. Rev. 31, e00088–17 (2018).

    Article  CAS  Google Scholar 

  25. von Wintersdorff, C. J. et al. Front. Microbiol. 7, 173 (2016).

    Google Scholar 

  26. Hall, J. P. J., Brockhurst, M. A. & Harrison, E. Phil. Trans. R. Soc. Lond. B Biol. Sci. 372, 20160424 (2017).

    Article  Google Scholar 

  27. Hall, J. P. J., Williams, D., Paterson, S., Harrison, E. & Brockhurst, M. A. Nat. Ecol. Evol. 1, 1348–1353 (2017).

    Article  Google Scholar 

  28. Andersson, D. I. & Hughes, D. Nat. Rev. Microbiol. 8, 260–271 (2010).

    Article  CAS  Google Scholar 

  29. Vogwill, T. & MacLean, R. C. Evol. Appl. 8, 284–295 (2015).

    Article  Google Scholar 

  30. Yokoyama, M. et al. Genome Biol. 19, 94 (2018).

    Article  Google Scholar 

  31. Kirk, J. A. et al. Sci. Transl. Med. 9, eaah6813 (2017).

    Article  Google Scholar 

  32. Thulin, E., Sundqvist, M. & Andersson, D. I. Antimicrob. Agents Chemother. 59, 1718–1727 (2015).

    Article  Google Scholar 

  33. Turner, K. H., Wessel, A. K., Palmer, G. C., Murray, J. L. & Whiteley, M. Proc. Natl Acad. Sci. USA 112, 4110–4115 (2015).

    Article  CAS  Google Scholar 

  34. Ersoy, S. C. et al. EBioMedicine 20, 173–181 (2017).

    Article  Google Scholar 

  35. Werthén, M. et al. APMIS 118, 156–164 (2010).

    Article  Google Scholar 

  36. Sun, Y., Dowd, S. E., Smith, E., Rhoads, D. D. & Wolcott, R. D. Wound Repair Regen. 16, 805–813 (2008).

    Article  Google Scholar 

  37. Dalton, T. et al. PLoS One 6, e27317 (2011).

    Article  CAS  Google Scholar 

  38. Harrison, F. & Diggle, S. P. Microbiology 162, 1755–1760 (2016).

    Article  CAS  Google Scholar 

  39. Chung, W. Y. et al. ALTEX 36, 29–38 (2018).

    Article  Google Scholar 

  40. Schulz zur Wiesch, P., Engelstädter, J. & Bonhoeffer, S. Antimicrob. Agents Chemother. 54, 2085–2095 (2010).

    Article  CAS  Google Scholar 

  41. Moura de Sousa, J., Balbontín, R., Durão, P. & Gordo, I. PLoS Biol. 15, e2001741 (2017).

    Article  Google Scholar 

  42. Björkman, J., Nagaev, I., Berg, O. G., Hughes, D. & Andersson, D. I. Science 287, 1479–1482 (2000).

    Article  Google Scholar 

  43. Schrag, S. J., Perrot, V. & Levin, B. R. Proc. Biol. Sci. 264, 1287–1291 (1997).

    Article  CAS  Google Scholar 

  44. Comas, I. et al. Nat. Genet. 44, 106–110 (2011).

    Article  Google Scholar 

  45. MacLean, R. C. & Vogwill, T. Evol. Med. Public Health 2015, 4–12 (2014).

    Article  Google Scholar 

  46. McNally, A. et al. PLoS Genet. 12, e1006280 (2016).

    Article  Google Scholar 

  47. O’Dwyer, K. et al. Antimicrob. Agents Chemother. 59, 289–298 (2015).

    Article  Google Scholar 

  48. Olofsson, S. K. & Cars, O. Clin. Infect. Dis. 45 Suppl 2, S129–S136 (2007).

    Article  Google Scholar 

  49. Mowat, E. et al. Am. J. Respir. Crit. Care Med. 183, 1674–1679 (2011).

    Article  Google Scholar 

  50. Williams, D. et al. Am. J. Respir. Crit. Care Med. 191, 775–785 (2015).

    Article  Google Scholar 

  51. Sommer, M. O. & Dantas, G. Curr. Opin. Microbiol. 14, 556–563 (2011).

    Article  CAS  Google Scholar 

  52. CRyPTIC Consortium and the 100,000 Genomes Project. et al. N. Engl. J. Med. 379, 1403–1415 (2018).

    Article  Google Scholar 

  53. Stalder, T., Press, M.O., Sullivan, S., Liachko, I. & Top, E.M. Preprint at https://doi.org/10.1101/484725 (2018).

  54. Xia, Y. et al. Front. Microbiol. 8, 2105 (2017).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael A. Brockhurst.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brockhurst, M.A., Harrison, F., Veening, JW. et al. Assessing evolutionary risks of resistance for new antimicrobial therapies. Nat Ecol Evol 3, 515–517 (2019). https://doi.org/10.1038/s41559-019-0854-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-019-0854-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing