Increasing impacts of land use on biodiversity and carbon sequestration driven by population and economic growth

Abstract

Biodiversity and ecosystem service losses driven by land-use change are expected to intensify as a growing and more affluent global population requires more agricultural and forestry products, and teleconnections in the global economy lead to increasing remote environmental responsibility. By combining global biophysical and economic models, we show that, between the years 2000 and 2011, overall population and economic growth resulted in increasing total impacts on bird diversity and carbon sequestration globally, despite a reduction of land-use impacts per unit of gross domestic product (GDP). The exceptions were North America and Western Europe, where there was a reduction of forestry and agriculture impacts on nature accentuated by the 2007–2008 financial crisis. Biodiversity losses occurred predominantly in Central and Southern America, Africa and Asia with international trade an important and growing driver. In 2011, 33% of Central and Southern America and 26% of Africa’s biodiversity impacts were driven by consumption in other world regions. Overall, cattle farming is the major driver of biodiversity loss, but oil seed production showed the largest increases in biodiversity impacts. Forestry activities exerted the highest impact on carbon sequestration, and also showed the largest increase in the 2000–2011 period. Our results suggest that to address the biodiversity crisis, governments should take an equitable approach recognizing remote responsibility, and promote a shift of economic development towards activities with low biodiversity impacts.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Production impacts on biodiversity and carbon sequestration per economic sectors.
Fig. 2: Decomposition of changes in impacts of agriculture and forestry on biodiversity and carbon sequestration into the contribution of the changes in population, GDP per capita and impact per GDP.
Fig. 3: GDP per capita (in constant 2011 international dollars) and per capita impacts on biodiversity and carbon sequestration, per world region.
Fig. 4: Biodiversity and carbon sequestration impacts embodied in international trade.

Data availability

The authors declare that all the data, except the land use spatially explicit dataset, supporting the findings of this study are available in the paper and its supplementary information files. The land-use spatially explicit dataset and the computer code used in this work are available upon request.

References

  1. 1.

    Venter, O. et al. Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation. Nat. Commun. 7, 12558 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015).

    CAS  Google Scholar 

  3. 3.

    MA Board. Millenium Ecosystem Assesment—Ecosystems and Human Well-Being (Island Press, Washington, DC, 2005).

  4. 4.

    West, P. C. et al. Leverage points for improving global food security and the environment. Science 345, 325–328 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Transforming our World: The 2030 Agenda for Sustainable Development (United Nations, 2015).

  7. 7.

    Lenzen, M. et al. International trade drives biodiversity threats in developing nations. Nature 486, 109–112 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Wilting, H. C., Schipper, A. M., Bakkenes, M., Meijer, J. R. & Huijbregts, M. A. J. Quantifying biodiversity losses due to human consumption: a global-scale footprint analysis. Environ. Sci. Technol. 51, 3298–3306 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Verones, F., Moran, D., Stadler, K., Kanemoto, K. & Wood, R. Resource footprints and their ecosystem consequences. Sci. Rep. 7, 40743 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Laurance, W. F., Sayer, J. & Cassman, K. G. Agricultural expansion and its impacts on tropical nature. Trends. Ecol. Evol. 29, 107–116 (2014).

    PubMed  PubMed Central  Google Scholar 

  11. 11.

    Phalan, B., Onial, M., Balmford, A. & Green, R. E. Reconciling food production and biodiversity conservation: land sharing and land sparing compared. Science 333, 1289–1291 (2011).

    CAS  Google Scholar 

  12. 12.

    Erb, K.-H., Krausmann, F., Lucht, W. & Haberl, H. Embodied HANPP: mapping the spatial disconnect between global biomass production and consumption. Ecol. Econ. 69, 328–334 (2009).

    Google Scholar 

  13. 13.

    Pereira, H. M. et al. Essential biodiversity variables. Science 339, 277–278 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Reyers, B., Stafford-Smith, M., Erb, K.-H., Scholes, R. J. & Selomane, O. Essential variables help to focus sustainable development goals monitoring. Curr. Opin. Environ. Sustain. 26–27, 97–105 (2017).

    Google Scholar 

  15. 15.

    Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).

    CAS  PubMed  Google Scholar 

  16. 16.

    Ehrlich, P. R. & Holdren, J. P. Impact of population growth. Science 171, 1212–1217 (1971).

    CAS  Google Scholar 

  17. 17.

    Stadler, K. et al. EXIOBASE 3: Developing a time series of detailed environmentally extended multi-regional input-output tables. J. Ind. Ecol. 22, 502–515 (2018).

    Google Scholar 

  18. 18.

    Ceballos, G. et al. Accelerated modern human–induced species losses: entering the sixth mass extinction. Sci. Adv. 1, e1400253 (2015).

    PubMed  PubMed Central  Google Scholar 

  19. 19.

    Blanco, G. et al. in Climate Change 2014: Mitigation of Climate Change (eds Edenhofer, O. et al.) (IPCC, Cambridge Univ. Press, 2014).

  20. 20.

    Vijay, V., Pimm, S. L., Jenkins, C. N. & Smith, S. J. The impacts of oil palm on recent deforestation and biodiversity loss. PLoS ONE 11, e0159668 (2016).

    PubMed  PubMed Central  Google Scholar 

  21. 21.

    Ward, J. D. et al. Is decoupling GDP growth from environmental impact possible? PLoS ONE 11, e0164733 (2016).

    PubMed  PubMed Central  Google Scholar 

  22. 22.

    Archive: Household Consumption Expenditure—National Accounts—Statistics Explained; http://ec.europa.eu/eurostat/statistics-explained/index.php/Archive:Household_consumption_expenditure_-_national_accounts (Eurostat, 2013).

  23. 23.

    Shao, Q., Schaffartzik, A., Mayer, A. & Krausmann, F. The high ‘price’ of dematerialization: a dynamic panel data analysis of material use and economic recession. J. Clean. Prod. 167, 120–132 (2017).

    Google Scholar 

  24. 24.

    EU-27 Construction Activity falls by 16% From its Precrisis High by the Second Quarter of 2011 (Eurostat, 2011).

  25. 25.

    U.S. Forest Resource Facts and Historical Trends (United States Department of Agriculture, 2014).

  26. 26.

    Seppelt, R., Manceur, A., Liu, J., Fenichel, E. & Klotz, S. Synchronized peak-rate years of global resources use. Ecol. Soc. 19, 50 (2014).

  27. 27.

    Gerstner, K. et al. Editor’s choice: review: effects of land use on plant diversity—a global meta-analysis. J. Appl. Ecol. 51, 1690–1700 (2014).

    Google Scholar 

  28. 28.

    Alcott, B. Impact caps: why population, affluence and technology strategies should be abandoned. J. Clean. Prod. 18, 552–560 (2010).

    Google Scholar 

  29. 29.

    Decoupling Natural Resource Use and Environmental Impacts from Economic Growth, A Report of the Working Group on Decoupling to the International Resource Panel (UNEP, 2011).

  30. 30.

    Abel, G. J., Barakat, B., Kc, S. & Lutz, W. Meeting the sustainable development goals leads to lower world population growth. Proc. Natl Acad. Sci. USA 113, 14294–14299 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Godfray, H. C. J. et al. Meat consumption, health, and the environment. Science 361, eaam5324 (2018).

    Google Scholar 

  32. 32.

    Poore, J. & Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 360, 987–992 (2018).

    CAS  Google Scholar 

  33. 33.

    United Nations Regional Groups of Member States (United Nations, 2014).

  34. 34.

    Erb, K.-H. et al. A comprehensive global 5 min resolution land-use data set for the year 2000 consistent with national census data. J. Land Use Sci. 2, 191–224 (2007).

    Google Scholar 

  35. 35.

    Ramankutty, N., Evan, A. T., Monfreda, C. & Foley, J. A. Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000. Glob. Biogeochem. Cycles 22, GB1003 (2008).

    Google Scholar 

  36. 36.

    Statistical Databases; http://faostat.fao.org/ (FAO, 2014).

  37. 37.

    Monfreda, C., Ramankutty, N. & Foley, J. A. Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000. Glob. Biogeochem. Cycles 22, GB1022 (2008).

    Google Scholar 

  38. 38.

    Schepaschenko, D. et al. Development of a global hybrid forest mask through the synergy of remote sensing, crowdsourcing and FAO statistics. Remote Sens. Environ. 162, 208–220 (2015).

    Google Scholar 

  39. 39.

    Potapov, P. et al. The last frontiers of wilderness: tracking loss of intact forest landscapes from 2000 to 2013. Sci. Adv. 3, e1600821 (2017).

    PubMed  PubMed Central  Google Scholar 

  40. 40.

    Müller, M., Pérez Dominguez, I. & Gay, S. H. Construction of Social Accounting Matrices for EU27 with Disaggregated Agricultural Sectors (agroSAM) (European Commission, 2009).

  41. 41.

    Erb, K. H. et al. Biomass turnover time in terrestrial ecosystems halved by land use. Nat. Geosci. 9, 674–678 (2016).

    CAS  Google Scholar 

  42. 42.

    Erb, K.-H. et al. Unexpectedly large impact of forest management and grazing on global vegetation biomass. Nature 553, 73–76 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Evans, J. Planted Forests: Uses, Impacts and Sustainability (CABI Publishing, Wallingford, 2009).

  44. 44.

    Penna, I. Understanding the FAO’s ‘Wood Supply from Planted Forests’ Projections (Centre for Environmental Management, Univ. Ballarat, 2010).

  45. 45.

    Pereira, H. M. & Daily, G. C. Modeling biodiversity dynamics in countryside landscapes. Ecology 87, 1877–1885 (2006).

    Google Scholar 

  46. 46.

    Pereira, H. M., Ziv, G. & Miranda, M. Countryside species–area relationship as a valid alternative to the matrix-calibrated species–area model. Conserv. Biol. 28, 874–876 (2014).

    PubMed  PubMed Central  Google Scholar 

  47. 47.

    Martins, I. S. & Pereira, H. M. Improving extinction projections across scales and habitats using the countryside species–area relationship. Sci. Rep. 7, 12899 (2017).

    PubMed  PubMed Central  Google Scholar 

  48. 48.

    Hanski, I., Zurita, G. A., Bellocq, M. I. & Rybicki, J. Species–fragmented area relationship. Proc. Natl Acad. Sci. USA 110, 12715–12720 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Rybicki, J. & Hanski, I. Species–area relationships and extinctions caused by habitat loss and fragmentation. Ecol. Lett. 16, 27–38 (2013).

    Google Scholar 

  50. 50.

    Rosenzweig, M. L. Species Diversity in Space and Tme (Cambridge Univ. Press, Cambridge, 1995).

  51. 51.

    Storch, D., Keil, P. & Jetz, W. Universal species–area and endemics–area relationships at continental scales. Nature 488, 78–81 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Chaudhary, A., Verones, F., de Baan, L. & Hellweg, S. Quantifying land use impacts on biodiversity: combining species–area models and vulnerability indicators. Environ. Sci. Technol. 49, 9987–9995 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Sodhi, N. S., Lee, T. M., Koh, L. P. & Brook, B. W. A meta-analysis of the impact of anthropogenic forest disturbance on Southeast Asia’s biotas. Biotropica 41, 103–109 (2009).

    Google Scholar 

  54. 54.

    Hudson, L. N., Newbold, T., Contu, S. & Hill, S. L. L. The 2016 Release of the PREDICTS Database (Natural History Museum Data Portal, 2016).

  55. 55.

    ArcGIS (Environmental Systems Resource Institute, 2009).

  56. 56.

    Holt, B. G. et al. An update of Wallace’s Zoogeographic Regions of the World. Science 339, 74–78 (2013).

    CAS  PubMed  Google Scholar 

  57. 57.

    Bird Species Distribution Maps of the World (BirdLife International and NatureServe, 2014).

  58. 58.

    Python Language Reference, v.2.7 (Python Software Foundation, 2010).

  59. 59.

    de Baan, L., Mutel, C. L., Curran, M., Hellweg, S. & Koellner, T. Land use in life cycle assessment: global characterization factors based on regional and global potential species extinction. Environ. Sci. Technol. 47, 9281–9290 (2013).

    PubMed  PubMed Central  Google Scholar 

  60. 60.

    Holtsmark, B. Harvesting in boreal forests and the biofuel carbon debt. Clim. Change 112, 415–428 (2011).

    Google Scholar 

  61. 61.

    Houghton, R. A. Revised estimates of the annual net flux of carbon to the atmosphere from changes in land use and land management 1850-2000. Tellus B 55, 378–390 (2003).

    Google Scholar 

  62. 62.

    Kastner, T., Erb, K.-H. & Nonhebel, S. International wood trade and forest change: a global analysis. Glob. Environ. Change 21, 947–956 (2011).

    Google Scholar 

  63. 63.

    Global Ecological Zoning for the Global Forest Resources Assessment, 2000 (Food and Agriculture Organization of the United Nations, 2001).

  64. 64.

    Ramankutty, N. & Foley, J. Estimating historical changes in global land cover: croplands from 1700 to 1992. Glob. Biogeochem. Cycles 13, 997–1027 (1999).

    CAS  Google Scholar 

  65. 65.

    Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on Earth. A new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. Bioscience 51, 933–938 (2001).

    Google Scholar 

  66. 66.

    Krausmann, F., Erb, K.-H., Gingrich, S., Lauk, C. & Haberl, H. Global patterns of socioeconomic biomass flows in the year 2000: a comprehensive assessment of supply, consumption and constraints. Ecol. Econ. 65, 471–487 (2008).

    Google Scholar 

  67. 67.

    Lauk, C., Haberl, H., Erb, K.-H., Gingrich, S. & Krausmann, F. Global socioeconomic carbon stocks in long-lived products 1900–2008. Environ. Res. Lett. 7, 034023 (2012).

    Google Scholar 

  68. 68.

    Schlesinger, W. H. Are wood pellets a green fuel? Science 359, 1328–1329 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. 69.

    Pingoud, K., Ekholm, T., Sievänen, R., Huuskonen, S. & Hynynen, J. Trade-offs between forest carbon stocks and harvests in a steady state—a multi-criteria analysis. J. Environ. Manage. 210, 96–103 (2018).

    PubMed  PubMed Central  Google Scholar 

  70. 70.

    Davis, S. J. & Caldeira, K. Consumption-based accounting of CO2 emissions. Proc. Natl Acad. Sci. USA 107, 5687–5692 (2010).

    CAS  Google Scholar 

  71. 71.

    Wiedmann, T. O. et al. The material footprint of nations. Proc. Natl Acad. Sci. USA 112, 6271–6276 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. 72.

    Marques, A., Verones, F., Kok, M. T., Huijbregts, M. A. & Pereira, H. M. How to quantify biodiversity footprints of consumption? A review of multi-regional input–output analysis and life cycle assessment. Curr. Opin. Environ. Sustain. 29, 75–81 (2017).

    Google Scholar 

  73. 73.

    Kitzes, J. An introduction to environmentally-extended input-output analysis. Resources 2, 489–503 (2013).

    Google Scholar 

  74. 74.

    Kanemoto, K., Lenzen, M., Peters, G. P., Moran, D. D. & Geschke, A. Frameworks for comparing emissions associated with production, consumption, and international trade. Environ. Sci. Technol. 46, 172–179 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. 75.

    Miller, R. & Bair, P. Input-Ouput Analysis. Foundations and Extensions (Cambridge Univ. Press, Cambridge, 2009).

  76. 76.

    Lenzen, M., Wood, R. & Wiedmann, T. Uncertainty analysis for multi-region input–output models—a case study of the UK’s carbon footprint. Econ. Syst. Res. 22, 43–63 (2010).

    Google Scholar 

  77. 77.

    Moran, D. & Wood, R. Convergence between the Eora, Wiod, Exiobase, and Open EU’s consumption-based carbon accounts. Econ. Syst. Res. 26, 245–261 (2014).

    Google Scholar 

  78. 78.

    de Koning, A. et al. Effect of aggregation and disaggregation on embodied material use of products in input–output analysis. Ecol. Econ. 116, 289–299 (2015).

    Google Scholar 

  79. 79.

    Lenzen, M. Aggregation versus disaggregation in input–output analysis of the environment. Econ. Syst. Res. 23, 73–89 (2011).

    Google Scholar 

  80. 80.

    Wood, R., Hawkins, T. R., Hertwich, E. G. & Tukker, A. Harmonising national input–output tables for consumption-based accounting—experiences from Exiopol. Econ. Syst. Res. 26, 387–409 (2014).

    Google Scholar 

  81. 81.

    Stadler, K., Steen-Olsen, K. & Wood, R. The ‘Rest of the World’—estimating the economic structure of missing regions in global multi-regional input–output tables. Econ. Syst. Res. 26, 303–326 (2014).

    Google Scholar 

  82. 82.

    Owen, A., Wood, R., Barrett, J. & Evans, A. Explaining value chain differences in MRIO databases through structural path decomposition. Econ. Syst. Res. 28, 243–272 (2016).

    Google Scholar 

  83. 83.

    Steen-Olsen, K., Owen, A., Hertwich, E. G. & Lenzen, M. Effects of sector aggregation on CO2 multipliers in multiregional input–output analyses. Econ. Syst. Res. 26, 284–302 (2014).

    Google Scholar 

  84. 84.

    World Development Indicators, SP.POP.TOTL Population, Total (World Bank, 2015).

  85. 85.

    World Development Indicators, NY.GDP.MKTP.PP.KD, GDP, PPP (Constant 2011 International $) (World Bank, 2015).

Download references

Acknowledgements

Authors would like to thank the financial support provided by EU-FP7 project DESIRE (project no. FP7-ENV-2012–308552). K.H.E. and T.K. have been funded by the Austrian Science Fund project GELUC (project no. P29130), the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) project no. KA 4815/1-1 and ERC grant (ERC-2010–263522 LUISE). K.H.E., T.K. and C.P. have been funded by the Vienna Science and Technology Fund (WWTF) through project no. ESR17-014. T.K. acknowledges support from the Swedish Research Council Formas (project no. 231–2014–1181). M.A.J.H. was supported by the ERC grant (ERC—CoG SIZE 647224).

Author information

Affiliations

Authors

Contributions

All authors provided input into the final manuscript. A.M., I.S.M., M.B., M.A.J.H., T.K., K.E. and H.M.P. designed the study. A.M., I.S.M., T.K., C.P., M.T., N.E., K.H.E., R.W. and K.S. contributed data. A.M., I.S.M. and T.K. performed the analysis. A.M. and H.M.P. wrote the paper with help from all the authors and coordinated the study.

Corresponding author

Correspondence to Alexandra Marques.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–7 and Supplementary Tables 1, 11–13, and 16

Reporting Summary

Supplementary Tables

Supplementary Tables 2–10, 14, 15, and 17–19

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Marques, A., Martins, I.S., Kastner, T. et al. Increasing impacts of land use on biodiversity and carbon sequestration driven by population and economic growth. Nat Ecol Evol 3, 628–637 (2019). https://doi.org/10.1038/s41559-019-0824-3

Download citation

Further reading