Article | Published:

Species diversity as a surrogate for conservation of phylogenetic and functional diversity in terrestrial vertebrates across the Americas

Nature Ecology & Evolutionvolume 3pages5361 (2019) | Download Citation

Abstract

Preserving the evolutionary history and ecological functions that different species embody, in addition to species themselves, is a growing concern for conservation. Recent studies warn that conservation priority regions identified using species diversity differ from those based on phylogenetic or functional diversity. However, spatial mismatches in conservation priority regions need not indicate low surrogacy among these dimensions in conservation planning. Here, we use data for 10,213 terrestrial vertebrate species across the Americas to evaluate surrogacy; that is, the proportion of phylogenetic or functional diversity represented in conservation plans targeting species. We find that most conservation plans targeting species diversity also represent phylogenetic and functional diversity well, despite spatial mismatches in the priority regions identified by each plan. However, not all phylogenetic and functional diversity is represented within species-based plans, with the highest-surrogacy conservation strategy depending on the proportion of land area included in plans. Our results indicate that targeting species diversity could be sufficient to preserve much of the phylogenetic and functional dimensions of biodiversity in terrestrial vertebrates of the Americas. Incorporating phylogenetic and functional data in broad-scale conservation planning may not always be necessary, especially when the cost of doing so is high.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Data availability

Distribution and extinction risk data for amphibians, birds, mammals and most reptiles are available through the IUCN Red List (https://www.iucnredlist.org/resources/spatial-data-download; for amphibians, reptiles and mammals) and BirdLife International (http://datazone.birdlife.org/species/requestdis; for birds). Phylogenetic data are available through the TimeTree of Life project (http://www.timetree.org/). Trait data were obtained from a number of existing data sources listed in the Methods. Distribution and extinction risk data for some of the squamate species of South America and the Caribbean are currently being processed by IUCN and will be provided shortly in the same format as that used for the other taxa (http://www.iucnredlist.org and https://www.iucnredlist.org/resources/spatial-data-download). All analysis R code, processed input data and summary output files are available in a dedicated GitHub repository at https://github.com/giorap/surrogacy-among-biodiversity-dimensions.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Barnosky, A. D. et al. Has the Earth’s sixth mass extinction already arrived? Nature 471, 51–57 (2011).

  2. 2.

    Pimm, S. L., Russell, G. J., Gittleman, J. L. & Brooks, T. M. The future of biodiversity. Science 269, 347–350 (1995).

  3. 3.

    Purvis, A. Nonrandom extinction and the loss of evolutionary history. Science 288, 328–330 (2000).

  4. 4.

    Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).

  5. 5.

    Pollock, L. J., Thuiller, W. & Jetz, W. Large conservation gains possible for global biodiversity facets. Nature 546, 141–144 (2017).

  6. 6.

    Brum, F. T. et al. Global priorities for conservation across multiple dimensions of mammalian diversity. Proc. Natl Acad. Sci. USA 114, 7641–7646 (2017).

  7. 7.

    Rosauer, D. F., Pollock, L. J., Linke, S. & Jetz, W. Phylogenetically informed spatial planning is required to conserve the mammalian tree of life. Proc. R. Soc. B 284, 20170627 (2017).

  8. 8.

    Rosauer, D. F. & Moritz, C. Real-world conservation planning for evolutionary diversity in the Kimberley, Australia, sidesteps uncertain taxonomy. Conserv. Lett. 11, e12438 (2017).

  9. 9.

    Devictor, V. et al. Spatial mismatch and congruence between taxonomic, phylogenetic and functional diversity: the need for integrative conservation strategies in a changing world. Ecol. Lett. 13, 1030–1040 (2010).

  10. 10.

    Stuart-Smith, R. D. et al. Integrating abundance and functional traits reveals new global hotspots of fish diversity. Nature 501, 539–542 (2013).

  11. 11.

    Mazel, F. et al. Multifaceted diversity–area relationships reveal global hotspots of mammalian species, trait and lineage diversity. Glob. Ecol. Biogeogr. 23, 836–847 (2014).

  12. 12.

    Pardo, I. et al. Spatial congruence between taxonomic, phylogenetic and functional hotspots: true pattern or methodological artefact? Divers. Distrib. 23, 209–220 (2017).

  13. 13.

    Strecker, A. L., Olden, J. D., Whittier, J. B. & Paukert, C. P. Defining conservation priorities for freshwater fishes according to taxonomic, functional, and phylogenetic diversity. Ecol. Appl. 21, 3002–3013 (2011).

  14. 14.

    Rodrigues, A. S. L. Effective global conservation strategies. Nature 450, E19 (2007).

  15. 15.

    Rodrigues, A. S. L. & Brooks, T. M. Shortcuts for biodiversity conservation planning: the effectiveness of surrogates. Annu. Rev. Ecol. Evol. Syst. 38, 713–737 (2007).

  16. 16.

    Rodrigues, A. S. L. et al. Complete, accurate, mammalian phylogenies aid conservation planning, but not much. Philos. Trans. R. Soc. B 366, 2652–2660 (2011).

  17. 17.

    Cardillo, M. et al. Multiple causes of high extinction risk in large mammal species. Science 309, 1239–1242 (2005).

  18. 18.

    The IUCN Red List of Threatened Species Version 2016-1 (IUCN, accessed 26 January 2016); https://www.iucnredlist.org

  19. 19.

    Mittermeier, R. A. et al. Hotspots Revisited: Earth’s Biologically Richest and Most Endangered Ecoregions (CEMEX, Conservation International and Agrupación Sierra Madre, Mexico City, 2004).

  20. 20.

    Stattersfield, A. J., Crosby, M. J., Long, A. J. & Wege, D. C. Endemic Bird Areas of the World: Priorities for Biodiversity Conservation (BirdLife International, Cambridge, 1998).

  21. 21.

    Olson, D. M. & Dinerstein, E. The Global 200: a representation approach to conserving the Earth’s most biologically valuable ecoregions. Conserv. Biol. 12, 502–515 (1998).

  22. 22.

    Hedges, S. B., Marin, J., Suleski, M., Paymer, M. & Kumar, S. Tree of life reveals clock-like speciation and diversification. Mol. Biol. Evol. 32, 835–845 (2015).

  23. 23.

    Ferrier, S. Mapping spatial pattern in biodiversity for regional conservation planning: where to from here? Syst. Biol. 51, 331–363 (2002).

  24. 24.

    Gaston, K. J. & Blackburn, T. M. Range size–body size relationships: evidence of scale dependence. Oikos 75, 479–485 (1996).

  25. 25.

    Böhm, M. et al. Correlates of extinction risk in squamate reptiles: the relative importance of biology, geography, threat and range size. Glob. Ecol. Biogeogr. 25, 391–405 (2016).

  26. 26.

    Fritz, S. A., Bininda-Emonds, O. R. P. & Purvis, A. Geographical variation in predictors of mammalian extinction risk: big is bad, but only in the tropics. Ecol. Lett. 12, 538–549 (2009).

  27. 27.

    Ducatez, S. & Shine, R. Drivers of extinction risk in terrestrial vertebrates. Conserv. Lett. 10, 186–194 (2017).

  28. 28.

    Moilanen, A. et al. Zonation Spatial Conservation Planning Framework and Software V3.1, User Manual (Edita, Helsinki, 2012).

  29. 29.

    Grantham, H. S., Pressey, R. L., Wells, J. A. & Beattie, A. J. Effectiveness of biodiversity surrogates for conservation planning: different measures of effectiveness generate a kaleidoscope of variation. PLoS ONE 5, e11430 (2010).

  30. 30.

    Isaac, N. J. B., Turvey, S. T., Collen, B., Waterman, C. & Baillie, J. E. M. Mammals on the EDGE: conservation priorities based on threat and phylogeny. PLoS ONE 2, e296 (2007).

  31. 31.

    Mouillot, D. et al. Rare species support vulnerable functions in high-diversity ecosystems. PLoS Biol. 11, e1001569 (2013).

  32. 32.

    Gaston, K. J. Valuing common species. Science 327, 154–155 (2010).

  33. 33.

    Violle, C. et al. Functional rarity: the ecology of outliers. Trends Ecol. Evol. 32, 356–367 (2017).

  34. 34.

    Butchart, S. H. M. et al. Protecting important sites for biodiversity contributes to meeting global conservation targets. PLoS ONE 7, e32529 (2012).

  35. 35.

    Brooks, T. M. Global biodiversity conservation priorities. Science 313, 58–61 (2006).

  36. 36.

    A Global Standard for the Identification of Key Biodiversity Areas (IUCN, Gland, 2016).

  37. 37.

    Ficetola, G. F., Mazel, F. & Thuiller, W. Global determinants of zoogeographical boundaries. Nat. Ecol. Evol. 1, 0089 (2017).

  38. 38.

    Ellis, E. C. Anthropogenic transformation of the terrestrial biosphere. Philos. Trans. R. Soc. A 369, 1010–1035 (2011).

  39. 39.

    Westgate, M. J., Tulloch, A. I. T., Barton, P. S., Pierson, J. C. & Lindenmayer, D. B. Optimal taxonomic groups for biodiversity assessment: a meta-analytic approach. Ecography 40, 539–548 (2017).

  40. 40.

    Whittaker, R. J. et al. Conservation biogeography: assessment and prospect. Divers. Distrib. 11, 3–23 (2005).

  41. 41.

    Bird Species Distribution Maps of the World (Birdlife International & NatureServe, accessed 19 May 2016); http://datazone.birdlife.org/species/requestdis

  42. 42.

    Young, B. E. Red listing Central American squamates reptiles. Herpetol. Rev. 43, 368–370 (2012).

  43. 43.

    Marin, J. & Hedges, S. B. Time best explains global variation in species richness of amphibians, birds and mammals. J. Biogeogr. 43, 1069–1079 (2016).

  44. 44.

    Rodrigues, A. S. L. & Gaston, K. J. Maximising phylogenetic diversity in the selection of networks of conservation areas. Biol. Conserv. 105, 103–111 (2002).

  45. 45.

    Wilman, H. et al. Eltontraits 1.0: species-level foraging attributes of the world’s birds and mammals. Ecology 95, 2027 (2014).

  46. 46.

    Myhrvold, N. P., Baldridge, E., Chan, B., Freeman, D. L. & Ernest, S. K. M. An amniote life-history database to perform comparative analyses with birds, mammals, and reptiles. Ecology 96, 3109 (2015).

  47. 47.

    Feldman, A., Sabath, N., Pyron, R. A., Mayrose, I. & Meiri, S. Body sizes and diversification rates of lizards, snakes, amphisbaenians and the tuatara. Glob. Ecol. Biogeogr. 25, 187–197 (2016).

  48. 48.

    Slavenko, A. & Meiri, S. Mean body sizes of amphibian species are poorly predicted by climate. J. Biogeogr. 42, 1246–1254 (2015).

  49. 49.

    Oliveira, B. F., São-Pedro, V. A., Santos-Barrera, G., Penone, C. & Costa, G. C. AmphiBIO, a global database for amphibian ecological traits. Sci. Data 4, 170123 (2017).

  50. 50.

    Rapacciuolo, G. et al. The signature of human pressure history on the biogeography of body mass in tetrapods. Glob. Ecol. Biogeogr. 26, 1022–1034 (2017).

  51. 51.

    Woodward, G. et al. Body size in ecological networks. Trends Ecol. Evol. 20, 402–409 (2005).

  52. 52.

    Mace, G. M. et al. Quantification of extinction risk: IUCN’s system for classifying threatened species. Conserv. Biol. 22, 1424–1442 (2008).

  53. 53.

    IUCN Red List Categories and Criteria Version 3.1 (IUCN, Gland, 2012).

  54. 54.

    Zupan, L. et al. Spatial mismatch of phylogenetic diversity across three vertebrate groups and protected areas in Europe. Divers. Distrib. 20, 674–685 (2014).

  55. 55.

    Albouy, C., Delattre, V. L., Mérigot, B., Meynard, C. N. & Leprieur, F. Multifaceted biodiversity hotspots of marine mammals for conservation priorities. Divers. Distrib. 23, 615–626 (2017).

  56. 56.

    Mouillot, D. et al. Global marine protected areas do not secure the evolutionary history of tropical corals and fishes. Nat. Commun. 7, 10359 (2016).

  57. 57.

    Webb, C. O., Ackerly, D. D., McPeek, M. A. & Donoghue, M. J. Phylogenies and community ecology. Annu. Rev. Ecol. Syst. 33, 475–505 (2002).

  58. 58.

    Faith, D. P. Conservation evaluation and phylogenetic diversity. Biol. Conserv. 61, 1–10 (1992).

  59. 59.

    Pearse, W. D. et al. pez: phylogenetics for the environmental sciences. Bioinformatics 31, 2888–2890 (2015).

  60. 60.

    Ferrier, S. & Watson, G. An Evaluation of the Effectiveness of Environmental Surrogates and Modelling Techniques in Predicting the Distribution of Biological Diversity (Environment Australia, Canberra, 1997).

  61. 61.

    Sabatini, F. M. et al. One taxon does not fit all: herb-layer diversity and stand structural complexity are weak predictors of biodiversity in Fagus sylvatica forests. Ecol. Indic. 69, 126–137 (2016).

  62. 62.

    Lehtomaki, J. zonator: Utilities for Zonation Spatial Conservation Prioritization Software R package version 0.5.9 (R Foundation for Statistical Computing, Vienna, 2017); https://CRAN.R-project.org/package=zonator

  63. 63.

    Veron, S. et al. Integrating data-deficient species in analyses of evolutionary history loss. Ecol. Evol. 6, 8502–8514 (2016).

Download references

Acknowledgements

This work was supported by the US National Science Foundation (grant 1136586). We thank the IUCN and the many herpetologists who participated in the Red List assessments of Central and South America reptiles.

Author information

Affiliations

  1. Life and Environmental Sciences, University of California Merced, Merced, CA, USA

    • Giovanni Rapacciuolo
  2. NatureServe, Arlington, VA, USA

    • Giovanni Rapacciuolo
    •  & Bruce E. Young
  3. Department of Ecology and Evolution, Stony Brook University, New York, NY, USA

    • Giovanni Rapacciuolo
    •  & Catherine H. Graham
  4. Swiss Federal Institute for Forest, Snow and Landscape, Birmensdorf, Switzerland

    • Catherine H. Graham
  5. Center for Biodiversity, Department of Biology, Temple University, Philadelphia, PA, USA

    • Julie Marin
    • , Jocelyn E. Behm
    • , S. Blair Hedges
    •  & Matthew R. Helmus
  6. Institut de Systématique, Evolution, Biodiversité, UMR 7205, Département Systématique et Evolution, Muséum National d’Histoire Naturelle, Sorbonne-Universités, Paris, France

    • Julie Marin
  7. Department of Biology, Auburn University at Montgomery, Montgomery, AL, USA

    • Gabriel C. Costa
  8. SILVIS Lab, Department of Forestry and Wildlife Ecology, University of Wisconsin, Madison, WI, USA

    • Volker C. Radeloff
  9. International Union for Conservation of Nature, Gland, Switzerland

    • Thomas M. Brooks
  10. World Agroforestry Center, University of the Philippines Los Baños, Los Baños, Philippines

    • Thomas M. Brooks
  11. Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia

    • Thomas M. Brooks

Authors

  1. Search for Giovanni Rapacciuolo in:

  2. Search for Catherine H. Graham in:

  3. Search for Julie Marin in:

  4. Search for Jocelyn E. Behm in:

  5. Search for Gabriel C. Costa in:

  6. Search for S. Blair Hedges in:

  7. Search for Matthew R. Helmus in:

  8. Search for Volker C. Radeloff in:

  9. Search for Bruce E. Young in:

  10. Search for Thomas M. Brooks in:

Contributions

T.M.B., G.R. and C.H.G. designed the study with input from all other authors. G.R. and J.M. integrated and processed the datasets. G.R. conducted the analyses with input from T.M.B., C.H.G. and J.M. G.R. and T.M.B wrote the initial manuscript draft. All authors contributed to editing subsequent manuscript versions.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Giovanni Rapacciuolo.

Supplementary information

  1. Supplementary Information

    Supplementary Figures 1–7, Supplementary Tables 1–6 and Supplementary References

  2. Reporting Summary

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/s41559-018-0744-7