Wind farms have cascading impacts on ecosystems across trophic levels

Abstract

Wind farms are a cleaner alternative to fossil fuels for mitigating the effects of climate change, but they also have complex ecological consequences. In the biodiversity hotspot of the Western Ghats in India, we find that wind farms reduce the abundance and activity of predatory birds (for example, Buteo, Butastur and Elanus species), which consequently increases the density of lizards, Sarada superba. The cascading effects of wind turbines on lizards include changes in behaviour, physiology and morphology that reflect a combination of predator release and density-dependent competition. By adding an effective trophic level to the top of food webs, we find that wind farms have emerging impacts that are greatly underestimated. There is thus a strong need for an ecosystem-wide view when aligning green-energy goals with environment protection.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Numerical effect of wind turbines on predatory birds and lizard prey.
Fig. 2: The presence of wind turbines influences the phenotypic trait responses of lizards.

Data availability

The data that support the findings of this study are available from the corresponding author upon request.

References

  1. 1.

    Global Wind Report (Global Wind Energy Council, 2017).

  2. 2.

    Adoption of the Paris Agreement (United Nations Framework Convention on Climate Change, 2015).

  3. 3.

    Denholm, P., Hand, M., Jackson, M. & Ong, S. Land Use Requirements of Modern Wind Power Plants in the United States Technical Report (National Renewable Energy Laboratory, Golden, 2009).

  4. 4.

    Schuster, E., Bulling, L. & Köppel, J. Environ. Manage. 56, 300–331 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Barrios, L. & Rodríguez, A. J. Appl. Ecol. 41, 72–81 (2004).

    Article  Google Scholar 

  6. 6.

    Korner-Nievergelt, F., Brinkmann, R., Niermann, I. & Behr, O. PLoS ONE 8, e67997 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Desholm, M. & Kahlert, J. Biol. Lett. 1, 296–298 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Cryan, P. M. et al. Proc. Natl Acad. Sci. USA 111, 15126–15131 (2014).

    Article  CAS  PubMed  Google Scholar 

  9. 9.

    Łopucki, R. & Mróz, I. Environ. Monit. Assess. 188, 122 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Stewart, G. B., Pullin, A. S. & Coles, C. F. Environ. Conserv. 34, 1–11 (2007).

    Article  Google Scholar 

  11. 11.

    Estes, J. A. et al. Science 333, 301–306 (2011).

    Article  CAS  Google Scholar 

  12. 12.

    Paine, R. T. Am. Nat. 103, 91–93 (1969).

    Article  Google Scholar 

  13. 13.

    Sih, A., Crowley, P., McPeek, M., Petranka, J. & Strohmeier, K. Annu. Rev. Ecol. Syst. 16, 269–311 (1985).

    Article  Google Scholar 

  14. 14.

    Lima, S. L. Bioscience 48, 25–34 (1998).

    Article  Google Scholar 

  15. 15.

    Clinchy, M., Sheriff, M. J. & Zanette, L. Y. Funct. Ecol. 27, 56–65 (2013).

    Article  Google Scholar 

  16. 16.

    Peckarsky, B. L. et al. Ecology 89, 2416–2425 (2008).

    Article  PubMed  Google Scholar 

  17. 17.

    Werner, E. E. & Peacor, S. D. Ecology 84, 1083–1100 (2003).

    Article  Google Scholar 

  18. 18.

    Sheriff, M. J. & Thaler, J. S. Oecologia 176, 607–611 (2014).

    Article  PubMed  Google Scholar 

  19. 19.

    Watve, A. J. Threat. Taxa 5, 3935–3962 (2013).

    Article  Google Scholar 

  20. 20.

    Karandikar, M., Ghate, K. & Kulkarni, K. J. Ecol. Soc. 28, 45–62 (2015).

    Google Scholar 

  21. 21.

    Blois, J. L., Williams, J. W., Fitzpatrick, M. C., Jackson, S. T. & Ferrier, S. Proc. Natl Acad. Sci. USA 110, 9374–9379 (2013).

    Article  PubMed  Google Scholar 

  22. 22.

    Miller, T. A. et al. Conserv. Biol. 28, 745–755 (2014).

    Article  PubMed  Google Scholar 

  23. 23.

    Drewitt, A. L. & Langston, R. Ibis 148, 29–42 (2006).

    Article  Google Scholar 

  24. 24.

    De Lucas, M., Janss, G. F. E., Whitfield, D. P. & Ferrer, M. J. Appl. Ecol. 45, 1695–1703 (2008).

    Article  Google Scholar 

  25. 25.

    Leddy, K. L., Higgins, K. F. & Naugle, D. E. Wilson Bull. 111, 100–104 (1999).

    Google Scholar 

  26. 26.

    Pande, S. et al. J. Threat. Taxa 5, 3504–3515 (2013).

    Article  Google Scholar 

  27. 27.

    Rich, E. L. & Romero, L. M. Am. J. Physiol. Regul. Integr. Comp. Physiol. 288, R1628–R1636 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. 28.

    Agnew, R. C. N., Smith, V. J. & Fowkes, R. C. J. Wildl. Dis. 52, 459–467 (2016).

    Article  PubMed  Google Scholar 

  29. 29.

    Thaker, M., Vanak, A. T., Lima, S. L. & Hews, D. K. Am. Nat. 175, 50–60 (2010).

    Article  PubMed  Google Scholar 

  30. 30.

    Thaker, M., Lima, S. L. & Hews, D. K. Horm. Behav. 56, 51–57 (2009).

    Article  CAS  PubMed  Google Scholar 

  31. 31.

    Ripple, W. J., Rooney, T. P. & Beschta, R. L. in Trophic Cascades: Predators, Prey, and the Changing Dynamics of Nature (eds Terborgh, J. & Estes, J.) 141–161 (Island Press, Washington DC, 2010).

  32. 32.

    Fraser, D. F., Gilliam, J. F., Akkara, J. T., Albanese, B. W. & Snider, S. B. Ecology 85, 312–319 (2004).

    Article  Google Scholar 

  33. 33.

    Jenkins, T. M., Diehl, S., Kratz, K. W. & Cooper, S. D. Ecology 80, 941–956 (1999).

    Article  Google Scholar 

  34. 34.

    Zambre, A. M. & Thaker, M. Anim. Behav. 127, 197–203 (2017).

    Article  Google Scholar 

  35. 35.

    Hill, G. E. Nature 350, 337–339 (1991).

    Article  Google Scholar 

  36. 36.

    Ruell, E. W. et al. Proc. R. Soc. B 280, 20122019 (2013).

    Article  CAS  PubMed  Google Scholar 

  37. 37.

    Dale, J., Dey, C. J., Delhey, K., Kempenaers, B. & Valcu, M. Nature 527, 367–370 (2015).

    Article  CAS  PubMed  Google Scholar 

  38. 38.

    Lutmerding, J. A., Rogosky, M., Peterjohn, B., McNicoll, J. & Bystrak, D. J. Rapt. Res. 46, 17–26 (2012).

    Article  Google Scholar 

  39. 39.

    Darimont, C. T., Fox, C. H., Bryan, H. M. & Reimchen, T. E. Science 349, 858–860 (2015).

    Article  CAS  PubMed  Google Scholar 

  40. 40.

    Bosch, J., Staffell, I. & Hawkes, A. D. Energy 131, 207–217 (2017).

    Article  Google Scholar 

  41. 41.

    Decision Adopted by the Conference of the Parties to the Convention on Biological Diversity at its Tenth Meeting. X/2. The Strategic Plan for Biodiversity 2011–2020 and the Aichi Biodiversity Targets (SCBD, 2010); https://www.cbd.int/doc/decisions/cop-10/cop-10-dec-02-en.pdf

  42. 42.

    R Development Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2017).

  43. 43.

    Grimmett, R., Inskipp, C. & Inskipp, T. Birds of the Indian Subcontinent: India, Pakistan, Sri Lanka, Nepal, Bhutan, Bangladesh and the Maldives (Bloomsbury, London, 2013).

  44. 44.

    Rasmussen, P. C. & Anderton, J. C. Birds of South Asia: The Ripley Guide (Smithsonian National Museum of Natural History and Lynx Edicions, Washington DC, 2005).

  45. 45.

    Dodd, C. K. Reptile Ecology and Conservation (Oxford Univ. Press, Oxford, 2016).

  46. 46.

    Nopper, J., Lauströer, B., Rödel, M. O. & Ganzhorn, J. U. J. Appl. Ecol. 54, 480–488 (2017).

    Article  Google Scholar 

  47. 47.

    De Infante Anton, J. R., Rotger, A., Igual, J. M. & Tavecchia, G. Wildl. Res. 40, 552–560 (2014).

    Article  Google Scholar 

  48. 48.

    Wingfield, J. C., Vleck, C. M. & Moore, M. C. J. Exp. Zool. 264, 419–428 (1992).

    Article  CAS  PubMed  Google Scholar 

  49. 49.

    Wada, H., Hahn, T. P. & Breuner, C. W. Gen. Comp. Endocrinol. 150, 405–413 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. 50.

    Blumstein, D. T. & Daniel, J. C. Proc. R. Soc. B 272, 1663–1668 (2005).

    Article  PubMed  Google Scholar 

  51. 51.

    Samia, D. S. M., Blumstein, D. T., Stankowich, T. & Cooper, W. E. Biol. Rev. 91, 349–366 (2016).

    Article  PubMed  Google Scholar 

  52. 52.

    Ydenberg, R. C. & Dill, L. M. Adv. Study Behav. 16, 229–249 (1986).

    Article  Google Scholar 

  53. 53.

    Peig, J. & Green, A. J. Oikos 118, 1883–1891 (2009).

    Article  Google Scholar 

  54. 54.

    Stevens, M., Parraga, C. A. & Cuthill, I. C. Biol. J. Linn. Soc. 90, 211–237 (2007).

    Article  Google Scholar 

  55. 55.

    Endler, J. A. Biol. J. Linn. Soc. 41, 315–352 (1990).

    Article  Google Scholar 

  56. 56.

    Grill, C. P. & Rush, V. N. Biol. J. Linn. Soc. 69, 121–138 (2000).

    Article  Google Scholar 

  57. 57.

    Bergman, T. J. & Beehner, J. C. Biol. J. Linn. Soc. 94, 231–240 (2008).

    Article  Google Scholar 

  58. 58.

    Kemp, D. J. et al. Am. Nat. 185, 705–724 (2015).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Maharashtra Forest Department for permits and Suzlon for allowing us to work on their property. We appreciate the logistical support provided by the Bhosale family in Satara, D. Gholap, and the Primary Health Centre in Thoseghar. We also thank N. Dandekar, G. Gowande, D. Joshi and R. Kashid for help in the field, A.K. Nageshkumar for remote sensing analysis, J. Endler for MatLab script, A. Ghatage for help with colour analyses and V. Giri for continued support. The Environmental Science Department of Fergusson College, Pune, provided partial support to H.B. during some of the bird surveys. Funding was provided by the MOEF-CC, DST-FIST and DBT-IISc partnership programme. Finally, we thank S.L. Lima, A.T. Vanak, K. Shanker and A. Batabyal for valuable comments on an earlier version of this manuscript.

Author information

Affiliations

Authors

Contributions

M.T. and A.Z. conceived and designed the study, analysed the data and wrote the paper. H.B. conceived and designed the bird data collection. A.Z. and H.B. collected the data. M.T. contributed materials.

Corresponding author

Correspondence to Maria Thaker.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–4

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Thaker, M., Zambre, A. & Bhosale, H. Wind farms have cascading impacts on ecosystems across trophic levels. Nat Ecol Evol 2, 1854–1858 (2018). https://doi.org/10.1038/s41559-018-0707-z

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing