Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The influence of soil communities on the temperature sensitivity of soil respiration

Abstract

Soil respiration represents a major carbon flux between terrestrial ecosystems and the atmosphere, and is expected to accelerate under climate warming. Despite its importance in climate change forecasts, however, our understanding of the effects of temperature on soil respiration (RS) is incomplete. Using a metabolic ecology approach we link soil biota metabolism, community composition and heterotrophic activity to predict RS rates across five biomes. We find that accounting for the ecological mechanisms underpinning decomposition processes predicts climatological RS variations observed in an independent dataset (n = 312). The importance of community composition is evident because without it RS is substantially underestimated. With increasing temperature, we predict a latitudinal increase in RS temperature sensitivity, with Q10 values ranging between 2.33 ± 0.01 in tropical forests to 2.72 ± 0.03 in tundra. This global trend has been widely observed, but has not previously been linked to soil communities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Metabolic scaling relationships in soil communities.
Fig. 2: Soil community composition across biomes.
Fig. 3: Temperature sensitivity of soil respiration (RS) across biomes and MATs.
Fig. 4: Model comparisons and goodness of fits with independent soil respiration (RS, g C m−2 yr−1) data.
Fig. 5: Observed and predicted Q10 values for RS across biomes.

Similar content being viewed by others

References

  1. Hicks Pries, C. E., Castanha, C., Porras, R. C. & Torn, M. S. The whole-soil carbon flux in response to warming. Science 355, 1420–1423 (2017).

    Article  CAS  PubMed  Google Scholar 

  2. Davidson, E. A. & Janssens, I. A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440, 165–173 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Crowther, T. W. et al. Quantifying global soil carbon losses in response to warming. Nature 540, 104–108 (2016).

    Article  CAS  PubMed  Google Scholar 

  4. Bradford, M. A. et al. Managing uncertainty in soil carbon feedbacks to climate change. Nat. Clim. Change 6, 751–758 (2016).

    Article  CAS  Google Scholar 

  5. Bond-Lamberty, B. & Thomson, A. Temperature-associated increases in the global soil respiration record. Nature 464, 579–582 (2010).

    Article  CAS  PubMed  Google Scholar 

  6. Cox, P. M., Betts, R. A., Jones, C. D., Spall, S. A. & Totterdell, I. J. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408, 184–187 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Koven, C. D., Hugelius, G., Lawrence, D. M. & Wieder, W. R. Higher climatological temperature sensitivity of soil carbon in cold than warm climates. Nat. Clim. Change 7, 817–822 (2017).

    Article  CAS  Google Scholar 

  8. Giardina, C. P., Litton, C. M., Crow, S. E. & Asner, G. P. Warming-related increases in soil CO2 efflux are explained by increased below-ground carbon flux. Nat Clim. Change 4, 822–827 (2014).

    Article  CAS  Google Scholar 

  9. Reichstein, M. et al. On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Glob. Change Biol. 11, 1424–1439 (2005).

    Article  Google Scholar 

  10. Raich, J. W. & Schlesinger, W. H. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus B 44, 81–99 (1992).

    Article  Google Scholar 

  11. Exbrayat, J. F., Pitman, A. J., Zhang, Q., Abramowitz, G. & Wang, Y. P. Examining soil carbon uncertainty in a global model: response of microbial decomposition to temperature, moisture and nutrient limitation. Biogeosciences 10, 7095–7108 (2013).

    Article  CAS  Google Scholar 

  12. Yang, J. et al. The role of satellite remote sensing in climate change studies. Nat. Clim. Change 3, 875–883 (2013).

    Article  Google Scholar 

  13. Rustad, L. E. et al. A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia 126, 543–562 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Balser, T. C. & Wixon, D. L. Investigating biological control over soil carbon temperature sensitivity. Glob. Change Biol 15, 2935–2949 (2009).

    Article  Google Scholar 

  15. Thakur, M. P. et al. Reduced feeding activity of soil detritivores under warmer and drier conditions. Nat. Clim. Change 8, 75–78 (2018).

    Article  Google Scholar 

  16. Eisenhauer, N., Cesarz, S., Koller, R., Worm, K. & Reich, P. B. Global change belowground: impacts of elevated CO2, nitrogen, and summer drought on soil food webs and biodiversity. Glob. Change Biol. 18, 435–447 (2012).

    Article  Google Scholar 

  17. Suttle, K. B., Thomsen, M. A. & Power, M. E. Species interactions reverse grassland responses to changing climate. Science 315, 640–642 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Yvon-Durocher, G. et al. Reconciling the temperature dependence of respiration across timescales and ecosystem types. Nature 487, 472–476 (2012).

    Article  CAS  PubMed  Google Scholar 

  19. Ehnes, R. B., Rall, B. C. & Brose, U. Phylogenetic grouping, curvature and metabolic scaling in terrestrial invertebrates. Ecol. Lett. 14, 993–1000 (2011).

    Article  PubMed  Google Scholar 

  20. Briones, M. J. I., Ostle, N. J., McNamara, N. P. & Poskitt, J. Functional shifts of grassland soil communities in response to soil warming. Soil Biol. Biochem. 41, 315–322 (2009).

    Article  CAS  Google Scholar 

  21. Sibly, R. M., Brown, J. H. & Kodric-Brown, A. Metabolic Ecology: A Scaling Approach (Wiley-Blackwell, Oxford, 2012).

    Book  Google Scholar 

  22. Brown, J. H. & Sibly, R. M. in Metabolic Ecology (eds Sibly, R. M., Brown, J. H. & Kodric-Brown, A.) Ch. 2 (Wiley-Blackwell, Oxford, 2012).

    Google Scholar 

  23. Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).

    Article  Google Scholar 

  24. Kozlowski, J., Konarzewski, M. & Gawelczyk, A. T. Cell size as a link between noncoding DNA and metabolic rate scaling. Proc. Natl Acad. Sci. USA 100, 14080–14085 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lampert, W. in A Manual on Methods for the Assessment of Secondary Productivity in Fresh Waters (ed. Edmonson, W. T.) 413–468 (Blackwell Scientific, Oxford, Edinburgh, 1984).

  26. Peters, R. H. The Ecological Implications of Body Size. Vol. 2 (Cambridge Univ. Press, Cambridge, 1983).

  27. Bond-Lamberty, B. & Thomson, A. A global database of soil respiration data. Biogeosciences 7, 1915–1926 (2010).

    Article  CAS  Google Scholar 

  28. Karhu, K. et al. Temperature sensitivity of soil respiration rates enhanced by microbial community response. Nature 513, 81–84 (2014).

    Article  CAS  PubMed  Google Scholar 

  29. Clein, J. S. & Schimel, J. P. Microbial activity of tundra and taiga soils at sub-zero temperatures. Soil Biol. Biochem. 27, 1231–1234 (1995).

    Article  CAS  Google Scholar 

  30. Dorrepaal, E. et al. Carbon respiration from subsurface peat accelerated by climate warming in the subarctic. Nature 460, 616–619 (2009).

    Article  CAS  Google Scholar 

  31. Nie, M. et al. Positive climate feedbacks of soil microbial communities in a semi-arid grassland. Ecol. Lett. 16, 234–241 (2013).

    Article  PubMed  Google Scholar 

  32. Aerts, R. The freezer defrosting: global warming and litter decomposition rates in cold biomes. J. Ecol 94, 713–724 (2006).

    Article  Google Scholar 

  33. Davidson, E. A., Janssens, I. A. & LuoY. On the variability of respiration in terrestrial ecosystems: moving beyond Q10. Glob. Change Biol. 12, 154–164 (2006).

    Article  Google Scholar 

  34. Mikan, C. J., Schimel, J. P. & Doyle, A. P. Temperature controls of microbial respiration in arctic tundra soils above and below freezing. Soil Biol. Biochem. 34, 1785–1795 (2002).

    Article  CAS  Google Scholar 

  35. Chen, H. & Tian, H. Q. Does a general temperature‐dependent Q10 model of soil respiration exist at biome and global scale? J. Integr. Plant Biol. 47, 1288–1302 (2005).

    Article  Google Scholar 

  36. Mahecha, M. D. et al. Global convergence in the temperature sensitivity of respiration at ecosystem level. Science 329, 838–840 (2010).

    Article  CAS  PubMed  Google Scholar 

  37. Meehan, T. D. Mass and temperature dependence of metabolic rate in litter and soil invertebrates. Physiol. Biochem. Zool. 79, 878–884 (2006).

    Article  PubMed  Google Scholar 

  38. Chown, S. L. et al. Scaling of insect metabolic rate is inconsistent with the nutrient supply network model. Funct. Ecol. 21, 282–290 (2007).

    Article  Google Scholar 

  39. Makarieva, A. M., Gorshkov, V. G. & LiB.-L. Energetics of the smallest: do bacteria breathe at the same rate as whales? Proc. R Soc. B 272, 2219–2224 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Laybourn, J. & Finlay, B. J. Respiratory energy losses related to cell weight and temperature in ciliated protozoa. Oecologia 24, 349–355 (1976).

    Article  PubMed  Google Scholar 

  41. Fenchel, T. & Finlay, B. J. Respiration rates in heterotrophic, free-living protozoa. Microb. Ecol. 9, 99–122 (1983).

    Article  CAS  PubMed  Google Scholar 

  42. Klekowski, R., Wasilewska, L. & Paplinska, E. Oxygen consumption by soil-inhabiting nematodes. Nematologica 18, 391–403 (1972).

    Article  Google Scholar 

  43. Ferris, H., Lau, S. & Venette, R. Population energetics of bacterial-feeding nematodes: respiration and metabolic rates based on CO2 production. Soil Biol. Biochem. 27, 319–330 (1995).

    Article  CAS  Google Scholar 

  44. Nielsen, C. O. Respiratory metabolism of some populations of enchytraeid worms and freeliving nematodes. Oikos 12, 17–35 (1961).

    Article  Google Scholar 

  45. Fierer, N., Strickland, M. S., Liptzin, D., Bradford, M. A. & Cleveland, C. C. Global patterns in belowground communities. Ecol. Lett. 12, 1238–1249 (2009).

    Article  PubMed  Google Scholar 

  46. Xu, X., Thornton, P. E. & Post, W. M. A global analysis of soil microbial biomass carbon, nitrogen and phosphorus in terrestrial ecosystems. Glob. Ecol. Biogeogr. 22, 737–749 (2013).

    Article  Google Scholar 

  47. Petersen, H. & Luxton, M. A comparative analysis of soil fauna populations and their role in decomposition processes. Oikos 39, 288–388 (1982).

    Article  Google Scholar 

  48. Subke, J. A., Inglima, I. & Francesca Cotrufo, M. Trends and methodological impacts in soil CO2 efflux partitioning: a metaanalytical review. Glob. Change Biol. 12, 921–943 (2006).

    Article  Google Scholar 

  49. Bond-Lamberty, B., Wang, C, & Gower, S. T. A global relationship between the heterotrophic and autotrophic components of soil respiration?. Glob. Change Biol. 10, 1756–1766 (2004).

    Article  Google Scholar 

  50. Hogberg, P., Nordgren, A., Buchmann, N. & TaylorA. F. Large-scale forest girdling shows that current photosynthesis drives soil respiration. Nature 411, 789–792 (2001).

    Article  CAS  PubMed  Google Scholar 

  51. Carey, J. C. et al. Temperature response of soil respiration largely unaltered with experimental warming. Proc. Natl Acad. Sci. USA 113, 13797–13802 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research has been financially supported by a Natural Environment Research Council Soil Security Programme fellowship (NE/N019504/1). We thank C. Venditti, J. Brown, G. Yvon-Durocher and C. Hall for their feedback and suggestions on the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

A.S.A.J. conceived the idea and compiled and analysed the data. A.S.A.J. and R.M.S. developed the methodology and wrote the manuscript.

Corresponding author

Correspondence to Alice S. A. Johnston.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–5, Supplementary Figures 1–4, Supplementary References

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Johnston, A.S.A., Sibly, R.M. The influence of soil communities on the temperature sensitivity of soil respiration. Nat Ecol Evol 2, 1597–1602 (2018). https://doi.org/10.1038/s41559-018-0648-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-018-0648-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing