Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A decision tree for assessing the risks and benefits of publishing biodiversity data

Abstract

Inadequate information on the geographical distribution of biodiversity hampers decision-making for conservation. Major efforts are underway to fill knowledge gaps, but there are increasing concerns that publishing the locations of species is dangerous, particularly for species at risk of exploitation. While we recognize that well-informed control of location data for highly sensitive taxa is necessary to avoid risks, such as poaching or habitat disturbance by recreational visitors, we argue that ignoring the benefits of sharing biodiversity data could unnecessarily obstruct conservation efforts for species and locations with low risks of exploitation. We provide a decision tree protocol for scientists that systematically considers both the risks of exploitation and potential benefits of increased conservation activities. Our protocol helps scientists assess the impacts of publishing biodiversity data and aims to enhance conservation opportunities, promote community engagement and reduce duplication of survey efforts.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Decision tree for publishing biodiversity data from monitoring and surveying.

References

  1. Costello, M. J., May, R. M. & Stork, N. E. Can we name Earth’s species before they go extinct? Science 339, 413–416 (2013).

    CAS  PubMed  Google Scholar 

  2. Boitani, L. et al. What spatial data do we need to develop global mammal conservation strategies?. Phil. Trans. R. Soc. B 366, 2623 (2011).

    PubMed  Google Scholar 

  3. Rondinini, C., Wilson, K. A., Boitani, L., Grantham, H. & Possingham, H. P. Tradeoffs of different types of species occurrence data for use in systematic conservation planning. Ecol. Lett. 9, 1136–1145 (2006).

    PubMed  Google Scholar 

  4. Whittaker, R. J. et al. Conservation biogeography: assessment and prospect. Divers. Distrib. 11, 3–23 (2005).

    Google Scholar 

  5. Winter, M. et al. Patterns and biases in climate change research on amphibians and reptiles: a systematic review. R. Soc. Open Sci. 3, 160158 (2016).

    PubMed  PubMed Central  Google Scholar 

  6. Feeley, K. J. & Silman, M. R. Keep collecting: accurate species distribution modelling requires more collections than previously thought. Divers. Distrib. 17, 1132–1140 (2011).

    Google Scholar 

  7. Joppa, L. N. et al. Filling in biodiversity threat gaps. Science 352, 416–418 (2016).

    CAS  PubMed  Google Scholar 

  8. Zeller, D., Froese, R. & Pauly, D. On losing and recovering fisheries and marine science data. Mar. Policy 29, 69–73 (2005).

    Google Scholar 

  9. Walsh, J. C., Dicks, L. V. & Sutherland, W. J. The effect of scientific evidence on conservation practitioners’ management decisions. Conserv. Biol. 29, 88–98 (2015).

    PubMed  Google Scholar 

  10. Turner, D. J., Smyth, A. K., Walker, C. M. & Lowe, A. J. in Terrestrial Ecosystem Research Infrastructures (eds Chabbi, A. & Loescher, H. W.) 341–368 (CRC Press, London, 2017).

  11. Sullivan, B. L. et al. eBird: a citizen-based bird observation network in the biological sciences. Biol. Conserv. 142, 2282–2292 (2009).

    Google Scholar 

  12. Rausher, M. D., McPeek, M. A., Moore, A. J., Rieseberg, L. & Whitlock, M. C. Data archiving. Evolution 64, 603–604 (2010).

    PubMed  Google Scholar 

  13. Whitlock, M. C., McPeek, M. A., Rausher, M. D., Rieseberg, L. & Moore, A. J. Data archiving. Am. Nat. 175, 145–146 (2010).

    PubMed  Google Scholar 

  14. Fuller, R. A., Lee, J. R. & Watson, J. E. M. Achieving open access to conservation science. Conserv. Biol. 28, 1550–1557 (2014).

    PubMed  PubMed Central  Google Scholar 

  15. Ngo, H. et al. First population assessment of two cryptic tiger geckos (Goniurosaurus) from northern Vietnam: implications for conservation. Amphib. Reptile Conserv. 10, 34–45 (2016).

    Google Scholar 

  16. Lindenmayer, D. & Scheele, B. Do not publish. Science 356, 800–801 (2017).

    CAS  PubMed  Google Scholar 

  17. Runge, C. A., Tulloch, A., Hammill, E., Possingham, H. P. & Fuller, R. A. Geographic range size and extinction risk assessment in nomadic species. Conserv. Biol. 29, 865–876 (2015).

    PubMed  PubMed Central  Google Scholar 

  18. Herzog, S. K., Maillard, Z. O., Embert, D., Caballero, P. & Quiroga, D. Range size estimates of Bolivian endemic bird species revisited: the importance of environmental data and national expert knowledge. J. Ornithol. 153, 1189–1202 (2012).

    Google Scholar 

  19. Chapman, A. D. & Grafton, O. Guide to Best Practices for Generalising Sensitive Species Occurrence Data (Global Biodiversity Information Facility, Copenhagen, 2008).

  20. Alonso, L. E., Deichmann, J. L., McKenna, S. A., Naskrecki, P. & Richards, S. J. Still Counting...Biodiversity Exploration for Conservation. The First 20 Years of the Rapid Assessment Program (Univ. Chicago Press, Chicago, 2011).

  21. Reichman, O. J., Jones, M. B. & Schildhauer, M. P. Challenges and opportunities of open data in ecology. Science 331, 703–705 (2011).

    CAS  PubMed  Google Scholar 

  22. Wallis, J. C., Rolando, E. & Borgman, C. L. If we share data, will anyone use them? Data sharing and reuse in the long tail of science and technology. PLoS ONE 8, e67332 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Borgman, C. L. The conundrum of sharing research data. J. Am. Soc. Inf. Sci. Tec. 63, 1059–1078 (2012).

    Google Scholar 

  24. McKiernan, E. C. et al. The open research value proposition: how sharing data can help researchers succeed. figshare https://doi.org/10.6084/m9.figshare.1619902.v2 (2016).

  25. Borgman, C. L. et al. Knowledge infrastructures in science: data, diversity, and digital libraries. Int. J. Digit. Libr. 16, 207–227 (2015).

    Google Scholar 

  26. Johnson, T. R. & van Densen, W. L. T. Benefits and organization of cooperative research for fisheries management. ICES J. Mar. Sci. 64, 834–840 (2007).

    Google Scholar 

  27. Maxwell, S. L., Fuller, R. A., Brooks, T. M. & Watson, J. E. Biodiversity: the ravages of guns, nets and bulldozers. Nature 536, 143–145 (2016).

    CAS  PubMed  Google Scholar 

  28. Fisher, D. O. Trajectories from extinction: where are missing mammals rediscovered? Glob. Ecol. Biogeogr. 20, 415–425 (2011).

    Google Scholar 

  29. Fisher, D. O. & Blomberg, S. P. Correlates of rediscovery and the detectability of extinction in mammals. Proc. R. Soc. B 278, 1090–1097 (2011).

    PubMed  Google Scholar 

  30. Kissling, W. D. et al. Building essential biodiversity variables (EBVs) of species distribution and abundance at a global scale. Biol. Rev. 93, 600–625 (2018).

    PubMed  Google Scholar 

  31. Proença, V. et al. Global biodiversity monitoring: from data sources to essential biodiversity variables. Biol. Conserv. 213, 256–263 (2017).

    Google Scholar 

  32. Trindade-Filho, J., de Carvalho, R. A., Brito, D. & Loyola, R. D. How does the inclusion of Data Deficient species change conservation priorities for amphibians in the Atlantic Forest? Biodivers. Conserv. 21, 2709–2718 (2012).

    Google Scholar 

  33. Setiawan, R. et al. Preventing global extinction of the Javan rhino: tsunami risk and future conservation direction. Conserv. Lett. 11, e12366 (2018).

    Google Scholar 

  34. Leader-Williams, N., Baldus, R. D. & Smith, R. J. in Recreational Hunting, Conservation and Rural Livelihoods: Science and Practice (eds Dickson, B., Hutton, J. & Adams, W. A.) 296–316 (Wiley-Blackwell, Oxford, 2009).

  35. Loveridge, A. J., Hemson, G., Davidson, Z. & Macdonald, D. W. in Biology and Conservation of Wild Felids (eds Macdonald, D. W. & Loveridge, A. J.) 283–304 (Oxford Univ. Press, Oxford, 2010).

  36. Steven, R., Pickering, C. & Guy Castley, J. A review of the impacts of nature based recreation on birds. J. Environ. Manag. 92, 2287–2294 (2011).

    Google Scholar 

  37. Gonzalez, J. A. Effects of harvesting of waterbirds and their eggs by native people in the northeastern Peruvian Amazon. Waterbirds 22, 217–224 (1999).

    Google Scholar 

  38. Arlettaz, R. et al. From publications to public actions: when conservation biologists bridge the gap between research and implementation. Bioscience 60, 835–842 (2010).

    Google Scholar 

  39. Burgman, M. A. Risks and Decisions for Conservation and Environmental Management (Cambridge Univ. Press, New York, 2005).

  40. Kelly, C. L., Pickering, C. M. & Buckley, R. C. Impacts of tourism on threatened plant taxa and communities in Australia. Ecol. Manag. Restor. 4, 37–44 (2003).

    Google Scholar 

  41. Ballantyne, M. & Pickering, C. Ecotourism as a threatening process for wild orchids. J. Ecotourism 11, 34–47 (2012).

    Google Scholar 

  42. Hissmann, K. et al. The South African coelacanths - an account of what is known after three submersible expeditions: coelacanth research. S. Afr. J. Sci. 102, 491–500 (2006).

    Google Scholar 

  43. Erdmann, M. Lessons learned from the conservation campaign for the Indonesian coelacanth, Latimeria menadoensis: coelacanth research. S. Afr. J. Sci. 102, 501–504 (2006).

    Google Scholar 

  44. Tulloch, V. J. D. et al. Why do we map threats? Linking threat mapping with actions to make better conservation decisions. Front. Ecol. Environ. 13, 91–99 (2015).

    Google Scholar 

  45. IUCN Red List of Threatened Species. Version 2017-3 (IUCN, Gland, accessed 5 January 2018); http://www.iucnredlist.org

  46. Michener, W. K. Ecological data sharing. Ecol. Inform. 29, 33–44 (2015).

    Google Scholar 

  47. Smith, M., Szongott, C., Henne, B. & Von Voigt, G. Big data privacy issues in public social media. In 2012 6th IEEE International Conference on Digital Ecosystems Technologies (DEST) 1–6 (IEEE, 2012).

  48. Mancini, A. & Koch, V. Sea turtle consumption and black market trade in Baja California Sur, Mexico. Endanger. Species Res. 7, 1–10 (2009).

    Google Scholar 

  49. Barry, C. Australia’s wildlife blackmarket trade. Australian Geographic (16 August 2011); http://www.australiangeographic.com.au/topics/wildlife/2011/08/australias-wildlife-blackmarket-trade/

  50. Stiles, D., Redmond, I., Cress, D., Nellemann, C. & Formo, R. K. Stolen Apes: The Illicit Trade in Chimpanzees, Gorillas, Bonobos and Orangutans A Rapid Response Assessment (United Nations Environment Programme, GRID-Arendal, Arendal, 2013).

  51. Auliya, M. et al. Trade in live reptiles, its impact on wild populations, and the role of the European market. Biol. Conserv. 204A, 103–119 (2016).

    Google Scholar 

  52. Collins-Kreiner, N., Malkinson, D., Labinger, Z. & Shtainvarz, R. Are birders good for birds? Bird conservation through tourism management in the Hula Valley, Israel. Tour. Manag. 38, 31–42 (2013).

    Google Scholar 

  53. Lowe, A. J. et al. Publish openly but responsibly. Science 357, 141–141 (2017).

    CAS  PubMed  Google Scholar 

  54. Michener, W. K., Brunt, J. W., Helly, J. J., Kirchner, T. B. & Stafford, S. G. Nongeospatial metadata for the ecological sciences. Ecol. Appl. 7, 330–342 (1997).

    Google Scholar 

  55. Piwowar, H. A., Day, R. S. & Fridsma, D. B. Sharing detailed research data is associated with increased citation rate. PLoS ONE 2, e308 (2007).

    PubMed  PubMed Central  Google Scholar 

  56. Campbell, E. G. & Bendavid, E. Data-sharing and data-withholding in genetics and the life sciences: results of a national survey of technology transfer officers. J. Health Care Law Policy 6, 241–255 (2003).

    PubMed  Google Scholar 

  57. Tenopir, C. et al. Data sharing by scientists: practices and perceptions. PLoS ONE 6, e21101 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Keniger, L., Gaston, K., Irvine, K. & Fuller, R. What are the benefits of interacting with nature? Int. J. Env. Res. Pub. Health 10, 913 (2013).

    Google Scholar 

  59. Rosen, G. E. & Smith, K. F. Summarizing the evidence on the international trade in illegal wildlife. EcoHealth 7, 24–32 (2010).

    PubMed  Google Scholar 

  60. Boakye, M. K., Pietersen, D. W., Kotzé, A., Dalton, D.-L. & Jansen, R. Knowledge and uses of African pangolins as a source of traditional medicine in Ghana. PLoS ONE 10, e0117199 (2015).

    PubMed  PubMed Central  Google Scholar 

  61. Gong, S.-P., Chow, A. T., Fong, J. J. & Shi, H.-T. The chelonian trade in the largest pet market in China: scale, scope and impact on turtle conservation. Oryx 43, 213–216 (2009).

    Google Scholar 

  62. Stuart, B. L., Rhodin, A. G. J., Grismer, L. L. & Hansel, T. Scientific description can imperil species. Science 312, 1137–1137 (2006).

    CAS  PubMed  Google Scholar 

  63. Purcell, S. W. et al. Sea cucumber fisheries: global analysis of stocks, management measures and drivers of overfishing. Fish Fish. 14, 34–59 (2013).

    Google Scholar 

  64. Packer, C. et al. Effects of trophy hunting on lion and leopard populations in Tanzania. Conserv. Biol. 25, 142–153 (2011).

    CAS  PubMed  Google Scholar 

  65. Meeuwig, J. J., Harcourt, R. G. & Whoriskey, F. G. When science places threatened species at risk. Conserv. Lett. 8, 151–152 (2015).

    Google Scholar 

  66. Crawford, A. & Bernstein, J. MEAs, Conservation and Conflicts: A Case Study of Virunga National Park, DRC (International Institute for Sustainable Development, Geneva, 2008).

  67. Jenkins, M. Who murdered the Virunga gorillas?. Natl Geogr. 214, 34–65 (2008).

    Google Scholar 

  68. Sattler, P. & Williams, R. The Conservation Status of Queensland’s Bioregional Ecosystems (QLD Environment Protection Agency, Brisbane, 1999).

  69. Kearney, M. R., Porter, W. P. & Murphy, S. A. An estimate of the water budget for the endangered night parrot of Australia under recent and future climates. Clim. Change Responses 3, 14 (2016).

    Google Scholar 

  70. Murphy, S. A., Silcock, J., Murphy, R., Reid, J. & Austin, J. J. Movements and habitat use of the night parrot Pezoporus occidentalis in south-western Queensland. Austral Ecol. 42, 858–868 (2017).

    Google Scholar 

  71. Sadovy de Mitcheson, Y. et al. Fishing groupers towards extinction: a global assessment of threats and extinction risks in a billion dollar fishery. Fish Fish. 14, 119–136 (2013).

    Google Scholar 

  72. Jumin, R. et al. From Marxan to management: ocean zoning with stakeholders for Tun Mustapha Park in Sabah, Malaysia. Oryx 1–12 (2017).

  73. Adams, V. M., Tulloch, V. J. & Possingham, H. P. Land-Sea Conservation Assessment for Papua New Guinea: A Report on the Work Undertaken to Fulfil the Terms of the Project Review and Integration of the Terrestrial and Marine Program of Works on Protected Areas (University of Queensland, and Conservation and Environment Protection Authority, 2016).

  74. Government of Papua New Guinea National Marine Conservation Assessment for Papua New Guinea (Conservation and Environment Protection Authority, 2015).

  75. Hamilton, R., Sadovy de Mitcheson, Y. & Aguilar-Perera, A. in Reef Fish Spawning Aggregations: Biology, Research and Management (eds Sadovy de Mitcheson, Y. & Colin, P.) 331–369 (Fish & Fisheries Series Vol. 35, Springer, Dordrecht, 2012).

  76. Lavery, T. H. & Judge, H. A new species of giant rat (Muridae, Uromys) from Vangunu, Solomon Islands. J. Mammal. 98, 1518–1530 (2017).

    Google Scholar 

  77. Barcelona, J. F., Pelser, P. B., Balete, D. S. & Co, L. L. Taxonomy, ecology, and conservation status of Philippine Rafflesia (Rafflesiaceae). Blumea 54, 77–93 (2009).

    Google Scholar 

  78. Olson, R. J. & McCord, R. A. in Ecological Data: Design, Management, and Processing (eds Michener, W. K. & Brunt, J. W.) 117–141 (Blackwell Science, Oxford, 2000).

Download references

Acknowledgements

A.I.T.T. was supported by an Australian Research Council Discovery Early Career Researcher Award DE170100599. E.B., G.E., N.P.L. and L.R. were supported by the Australian Government National Environmental Science Programme’s Threatened Species Recovery Hub. N.P.L. was partially funded by Bush Heritage Australia. N.B. was supported by an Australian Research Council DECRA DE150101552. TERN (A.K.S.) is supported by the Australian National Collaborative Research Infrastructure Strategy. R. Alcorn (eBird), T. Laity (Australian Government Department of the Environment and Energy), S. Murphy and A. Kutt (Bush Heritage Australia) provided feedback on early drafts. J. Miller and R. Fuller contributed to early discussions.

Author information

Authors and Affiliations

Authors

Contributions

A.I.T.T. led the development of the risk assessment and decision tree with contributions from all authors to the final decision protocol. All authors provided ideas and critical feedback, and co-wrote the manuscript.

Corresponding author

Correspondence to Ayesha I. T. Tulloch.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Information; Supplementary Tables 1-2; Supplementary Figure 1; Supplementary References

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tulloch, A.I.T., Auerbach, N., Avery-Gomm, S. et al. A decision tree for assessing the risks and benefits of publishing biodiversity data. Nat Ecol Evol 2, 1209–1217 (2018). https://doi.org/10.1038/s41559-018-0608-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-018-0608-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing