Abstract

A hallmark of metazoan evolution is the emergence of genomic mechanisms that implement cell-type-specific functions. However, the evolution of metazoan cell types and their underlying gene regulatory programmes remains largely uncharacterized. Here, we use whole-organism single-cell RNA sequencing to map cell-type-specific transcription in Porifera (sponges), Ctenophora (comb jellies) and Placozoa species. We describe the repertoires of cell types in these non-bilaterian animals, uncovering diverse instances of previously unknown molecular signatures, such as multiple types of peptidergic cells in Placozoa. Analysis of the regulatory programmes of these cell types reveals variable levels of complexity. In placozoans and poriferans, sequence motifs in the promoters are predictive of cell-type-specific programmes. By contrast, the generation of a higher diversity of cell types in ctenophores is associated with lower specificity of promoter sequences and the existence of distal regulatory elements. Our findings demonstrate that metazoan cell types can be defined by networks of transcription factors and proximal promoters, and indicate that further genome regulatory complexity may be required for more diverse cell type repertoires.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Arendt, D. et al. The origin and evolution of cell types. Nat. Rev. Genet. 17, 744–757 (2016).

  2. 2.

    Sebé-Pedrós, A., Degnan, B. M. & Ruiz-Trillo, I. The origin of Metazoa: a unicellular perspective. Nat. Rev. Genet. 18, 498–512 (2017).

  3. 3.

    Whelan, N. V. et al. Ctenophore relationships and their placement as the sister group to all other animals. Nat. Ecol. Evol. 1, 1737–1746 (2017).

  4. 4.

    Simion, P. et al. A large and consistent phylogenomic dataset supports sponges as the sister group to all other animals. Curr. Biol. 27, 958–967 (2017).

  5. 5.

    Hejnol, A. et al. Assessing the root of bilaterian animals with scalable phylogenomic methods. Proc. R. Soc. B 276, 4261–4270 (2009).

  6. 6.

    Dunn, C. W. et al. Broad phylogenomic sampling improves resolution of the animal tree of life. Nature 452, 745–749 (2008).

  7. 7.

    Valentine, J. W. in Keywords and Concepts in Evolutionary Developmental Biology (eds. Hall, B. & Olson, W.) 35–53 (Harvard Univ. Press, Cambridge, MA, 2003).

  8. 8.

    Cunningham, J. A., Liu, A. G., Bengtson, S. & Donoghue, P. C. J. The origin of animals: can molecular clocks and the fossil record be reconciled? BioEssays 39, e201600120 (2017).

  9. 9.

    Dunn, C. W., Leys, S. P. & Haddock, S. H. D. The hidden biology of sponges and ctenophores. Trends Ecol. Evol. 30, 282–291 (2015).

  10. 10.

    Jager, M. & Manuel, M. Ctenophores: an evolutionary-developmental perspective. Curr. Opin. Genet. Dev. 39, 85–92 (2016).

  11. 11.

    Jékely, G., Paps, J. & Nielsen, C. The phylogenetic position of ctenophores and the origin(s) of nervous systems. EvoDevo 6, 1 (2015).

  12. 12.

    Moroz, L. L. et al. The ctenophore genome and the evolutionary origins of neural systems. Nature 510, 109–114 (2014).

  13. 13.

    Simpson, T. L. The Cell Biology of Sponges (Springer, New York, NY, 1984).

  14. 14.

    Schierwater, B. & DeSalle, R. Placozoa. Curr. Biol. 28, R97–R98 (2018).

  15. 15.

    Srivastava, M. et al. The Amphimedon queenslandica genome and the evolution of animal complexity. Nature 466, 720–726 (2010).

  16. 16.

    Fernandez-Valverde, S. L., Calcino, A. D. & Degnan, B. M. Deep developmental transcriptome sequencing uncovers numerous new genes and enhances gene annotation in the sponge Amphimedon queenslandica. BMC Genom. 16, 387 (2015).

  17. 17.

    Ryan, J. F. et al. The genome of the ctenophore Mnemiopsis leidyi and its implications for cell type evolution. Science 342, 1242592 (2013).

  18. 18.

    Srivastava, M. et al. The Trichoplax genome and the nature of placozoans. Nature 454, 955–960 (2008).

  19. 19.

    Putnam, N. H. et al. Sea anemone genome reveals ancestral eumetazoan gene repertoire and genomic organization. Science 317, 86–94 (2007).

  20. 20.

    Cao, J. et al. Comprehensive single-cell transcriptional profiling of a multicellular organism. Science 357, 661–667 (2017).

  21. 21.

    Sebé-Pedrós, A. et al. Cnidarian cell type diversity and regulation revealed by whole-organism single-cell RNA-Seq. Cell 173, 1520–1534 (2018).

  22. 22.

    Jaitin, D. A. et al. Massively parallel single-cell RNA-Seq for marker-free decomposition of tissues into cell types. Science 343, 776–779 (2014).

  23. 23.

    Gonobobleva, E. & Maldonado, M. Choanocyte ultrastructure in Halisarca dujardini (Demospongiae, Halisarcida). J. Morphol. 270, 615–627 (2009).

  24. 24.

    Funayama, N., Nakatsukasa, M., Hayashi, T. & Agata, K. Isolation of the choanocyte in the fresh water sponge, Ephydatia fluviatilis and its lineage marker, Ef annexin. Dev. Growth Differ. 47, 243–253 (2005).

  25. 25.

    Nickel, M., Scheer, C., Hammel, J. U., Herzen, J. & Beckmann, F. The contractile sponge epithelium sensu lato—body contraction of the demosponge Tethya wilhelma is mediated by the pinacoderm. J. Exp. Biol. 214, 1692–1698 (2011).

  26. 26.

    Nichols, S. A., Roberts, B. W., Richter, D. J., Fairclough, S. R. & King, N. Origin of metazoan cadherin diversity and the antiquity of the classical cadherin/β-catenin complex. Proc. Natl Acad. Sci. USA 109, 13046–13051 (2012).

  27. 27.

    Adamska, M. et al. The evolutionary origin of hedgehog proteins. Curr. Biol. 17, 836–837 (2007).

  28. 28.

    Nakanishi, N., Sogabe, S. & Degnan, B. M. Evolutionary origin of gastrulation: insights from sponge development. BMC Biol. 12, 26 (2014).

  29. 29.

    Müller, W. E. G. The stem cell concept in sponges (Porifera): metazoan traits. Semin. Cell Dev. Biol. 17, 481–491 (2006).

  30. 30.

    Alié, A. et al. The ancestral gene repertoire of animal stem cells. Proc. Natl Acad. Sci. USA 112, E7093–E7100 (2015).

  31. 31.

    Rieger, R. M. The biphasic life cycle—a central theme of metazoan evolution. Am. Zool. 34, 484–491 (1994).

  32. 32.

    Degnan, S. M. & Degnan, B. M. The origin of the pelagobenthic metazoan life cycle: what’s sex got to do with it? Integr. Comp. Biol. 46, 683–690 (2006).

  33. 33.

    Nakanishi, N., Stoupin, D., Degnan, S. M. & Degnan, B. M. Sensory flask cells in sponge larvae regulate metamorphosis via calcium signaling. Integr. Comp. Biol. 55, 1018–1027 (2015).

  34. 34.

    Adamska, M. et al. Wnt and TGF-β expression in the sponge Amphimedon queenslandica and the origin of metazoan embryonic patterning. PLoS ONE 2, e1031 (2007).

  35. 35.

    Philippe, H. et al. Phylogenomics revives traditional views on deep animal relationships. Curr. Biol. 19, 706–712 (2009).

  36. 36.

    Liebeskind, B. J., Hofmann, H. A., Hillis, D. M. & Zakon, H. H. Evolution of animal neural systems. Annu. Rev. Ecol. Evol. Syst. 48, 377–398 (2017).

  37. 37.

    Schnitzler, C. E. et al. Genomic organization, evolution, and expression of photoprotein and opsin genes in Mnemiopsis leidyi: a new view of ctenophore photocytes. BMC Biol. 10, 107 (2012).

  38. 38.

    Satterlie, R. & Case, J. Gap junctions suggest epithelial conduction within the comb plates of the ctenophore Pleurobrachia bachei. Cell Tissue Res. 193, 87–91 (1978).

  39. 39.

    Steinmetz, P. R. H. et al. Independent evolution of striated muscles in cnidarians and bilaterians. Nature 487, 231–234 (2012).

  40. 40.

    Sebé-Pedrós, A. et al. Insights into the origin of metazoan filopodia and microvilli. Mol. Biol. Evol. 30, 2013–2023 (2013).

  41. 41.

    Tudor, J. E., Pallaghy, P. K., Pennington, M. W. & Norton, R. S. Solution structure of ShK toxin, a novel potassium channel inhibitor from a sea anemone. Nat. Struct. Biol. 3, 317–320 (1996).

  42. 42.

    Marlow, H. & Arendt, D. Evolution: ctenophore genomes and the origin of neurons. Curr. Biol. 24, R757–R761 (2014).

  43. 43.

    Smith, C. L. et al. Novel cell types, neurosecretory cells, and body plan of the early-diverging metazoan Trichoplax adhaerens. Curr. Biol. 24, 1565–1572 (2014).

  44. 44.

    Ganz, T. Defensins: antimicrobial peptides of innate immunity. Nat. Rev. Immunol. 3, 710–720 (2003).

  45. 45.

    Senatore, A., Reese, T. S. & Smith, C. L. Neuropeptidergic integration of behavior in Trichoplax adhaerens, an animal without synapses. J. Exp. Biol. 220, 3381–3390 (2017).

  46. 46.

    Nikitin, M. Bioinformatic prediction of Trichoplax adhaerens regulatory peptides. Gen. Comp. Endocrinol. 212, 145–155 (2015).

  47. 47.

    Riesgo, A., Farrar, N., Windsor, P. J., Giribet, G. & Leys, S. P. The analysis of eight transcriptomes from all poriferan classes reveals surprising genetic complexity in sponges. Mol. Biol. Evol. 31, 1102–1120 (2014).

  48. 48.

    Tautz, D. & Domazet-Lošo, T. The evolutionary origin of orphan genes. Nat. Rev. Genet. 12, 692–702 (2011).

  49. 49.

    Sebé-Pedrós, A. et al. High-throughput proteomics reveals the unicellular roots of animal phosphosignaling and cell differentiation. Dev. Cell 39, 186–197 (2016).

  50. 50.

    Levine, M. & Tjian, R. Transcription regulation and animal diversity. Nature 424, 147–151 (2003).

  51. 51.

    Piasecki, B. P., Burghoorn, J. & Swoboda, P. Regulatory Factor X (RFX)-mediated transcriptional rewiring of ciliary genes in animals. Proc. Natl Acad. Sci. USA 107, 12969–12974 (2010).

  52. 52.

    Wang, S. & Samakovlis, C. Grainy head and its target genes in epithelial morphogenesis and wound healing. Curr. Top. Dev. Biol. 98, 35–63 (2012).

  53. 53.

    Peter, I. S. & Davidson, E. H. Evolution of gene regulatory networks controlling body plan development. Cell 144, 970–985 (2011).

  54. 54.

    Sebé-Pedrós, A. et al. The dynamic regulatory genome of Capsaspora and the origin of animal multicellularity. Cell 165, 1224–1237 (2016).

  55. 55.

    Lara-Astiaso, D. et al. Chromatin state dynamics during blood formation. Science 345, 943–949 (2014).

  56. 56.

    Nora, E. P. et al. Targeted degradation of CTCF decouples local insulation of chromosome domains from genomic compartmentalization. Cell 169, 930–944 (2017).

  57. 57.

    Wang, Q., Sun, Q., Czajkowsky, D. M. & Shao, Z. Sub-kb Hi-C in D. melanogaster reveals conserved characteristics of TADs between insect and mammalian cells. Nat. Commun. 9, 188 (2018).

  58. 58.

    Ramírez, F. et al. High-resolution TADs reveal DNA sequences underlying genome organization in flies. Nat. Commun. 9, 189 (2018).

  59. 59.

    Grell, K. G. & Benwitz, G. Ultrastruktur von Trichoplax adhaerens F.E. Schulze. Cytobiologie 4, 216–240 (1971).

  60. 60.

    Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).

  61. 61.

    Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

  62. 62.

    Heinz, S. et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell 38, 576–589 (2010).

  63. 63.

    Jolma, A. et al. DNA-binding specificities of human transcription factors. Cell 152, 327–339 (2013).

  64. 64.

    Jolma, A. et al. DNA-dependent formation of transcription factor pairs alters their binding specificity. Nature 527, 384–388 (2015).

  65. 65.

    Kulakovskiy, I. V. et al. HOCOMOCO: a comprehensive collection of human transcription factor binding sites models. Nucleic Acids Res. 41, D195–D202 (2013).

  66. 66.

    Tanay, A. Extensive low-affinity transcriptional interactions in the yeast genome. Genome Res. 16, 962–972 (2006).

  67. 67.

    Punta, M. et al. The Pfam protein families database. Nucleic Acids Res. 40, D290–D301 (2012).

  68. 68.

    De Mendoza, A. et al. Transcription factor evolution in eukaryotes and the assembly of the regulatory toolkit in multicellular lineages. Proc. Natl Acad. Sci. USA 110, E4858–E4866 (2013).

  69. 69.

    Katoh, K. & Toh, H. Recent developments in the MAFFT multiple sequence alignment program. Brief. Bioinform. 9, 286–298 (2008).

  70. 70.

    Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. ProtTest 3: fast selection of best-fit models of protein evolution. Bioinformatics 27, 1164–1165 (2011).

  71. 71.

    Stamatakis, A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 2688–2690 (2006).

  72. 72.

    Lartillot, N., Lepage, T. & Blanquart, S. PhyloBayes 3: a Bayesian software package for phylogenetic reconstruction and molecular dating. Bioinformatics 25, 2286–2288 (2009).

  73. 73.

    Li, L., Stoeckert, C. J. Jr & Roos, D. S. D. OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res. 13, 2178–2189 (2003).

  74. 74.

    Gaiti, F. et al. Landscape of histone modifications in a sponge reveals the origin of animal cis-regulatory complexity. eLife 6, e22194 (2017).

  75. 75.

    Booth, D. S. & King, N. Evolution: gene regulation in transition. Nature 534, 482–483 (2016).

  76. 76.

    Vij, S. et al. Evolutionarily ancient association of the FoxJ1 transcription factor with the motile ciliogenic program. PLoS Genet. 8, e1003019 (2012).

Download references

Acknowledgements

We thank all members of the Tanay laboratory for comments and discussion, X. Grau-Bové for genome statistics in different species, A. Furu for help with M. leidyi, and H.-J. Osigus and B. Schierwater for providing T. adharens starting culture. Research in A.H.’s group was supported by the European Research Council Community’s Framework Program Horizon 2020 (2014–2020) ERC grant agreement 648861 and an NSF IRFP Postdoctoral Fellowship (1158629) to K.P. Research by B.M.D. is supported by the Australian Research Council. A.S.-P. was supported by an EMBO Long-Term Fellowship (ALTF 841-2014). Research in A.T.’s group was supported by the European Research Council Community’s Framework Program Horizon 2020 (2014–2020) ERC grant agreement 724824. A.T. is a Kimmel investigator.

Author information

Author notes

    • Federico Gaiti

    Present address: Department of Medicine, Weill Cornell Medicine and New York Genome Center, New York, NY, USA

Affiliations

  1. Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel

    • Arnau Sebé-Pedrós
    • , Elad Chomsky
    • , Zohar Mukamel
    •  & Amos Tanay
  2. Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel

    • Arnau Sebé-Pedrós
    • , Elad Chomsky
    • , Zohar Mukamel
    •  & Amos Tanay
  3. Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway

    • Kevin Pang
    •  & Andreas Hejnol
  4. Department of Immunology, Weizmann Institute of Science, Rehovot, Israel

    • David Lara-Astiaso
    •  & Ido Amit
  5. School of Biological Sciences, University of Queensland, Brisbane, Queensland, Australia

    • Federico Gaiti
    •  & Bernard M. Degnan

Authors

  1. Search for Arnau Sebé-Pedrós in:

  2. Search for Elad Chomsky in:

  3. Search for Kevin Pang in:

  4. Search for David Lara-Astiaso in:

  5. Search for Federico Gaiti in:

  6. Search for Zohar Mukamel in:

  7. Search for Ido Amit in:

  8. Search for Andreas Hejnol in:

  9. Search for Bernard M. Degnan in:

  10. Search for Amos Tanay in:

Contributions

A.S.-P. and A.T. conceived the project. K.P., A.H., B.M.D. and F.G. provided animal specimens and chromatin material. Z.M. and E.C. assisted with experimental setup and analysis tools. I.A. assisted with iChIP and MARS-seq setup and reagents. A.S.-P. performed the MARS-seq experiments. A.S.-P. and D.L.-A. performed the iChIP experiments. A.S.-P. and A.T. analysed the data and wrote the manuscript. All authors discussed and commented on the data.

Competing interests

The authors declare no competing interests.

Corresponding authors

Correspondence to Arnau Sebé-Pedrós or Amos Tanay.

Supplementary information

  1. Supplementary Information

    Supplementary figures 1–8, Legends for Supplementary tables 1–7.

  2. Reporting Summary

  3. Appendix

    MetaCell guide.

  4. Supplementary table 1

    A. queenslandica, M. leidyi and T. adharens scRNA sequencing library statistics.

  5. Supplementary table 2

    A. queenslandica adult cell clusters enriched gene lists.

  6. Supplementary table 3

    A. queenslandica larva cell clusters enriched gene lists.

  7. Supplementary table 4

    M. leidyi cell clusters enriched gene lists.

  8. Supplementary table 5

    T. adhaerens cell clusters enriched gene lists.

  9. Supplementary table 6

    Taxon sampling employed in the orthoclustering analysis.

  10. Supplementary table 7

    A. queenslandica, M. leidyi and T. adharens de novo motifs.

About this article

Publication history

Received

Accepted

Published

Issue Date

DOI

https://doi.org/10.1038/s41559-018-0575-6

Further reading