Tempo and timing of ecological trait divergence in bird speciation


Organismal traits may evolve either gradually or in rapid pulses, but the relative importance of these modes in the generation of species differences is unclear. Additionally, while pulsed evolution is frequently assumed to be associated with speciation events, few studies have explicitly examined how the tempo of trait divergence varies with respect to different geographical phases of speciation, starting with geographic isolation and ending, in many cases, with spatial overlap (sympatry). Here we address these issues by combining divergence time estimates, trait measurements and geographic range data for 952 avian sister species pairs worldwide to examine the tempo and timing of trait divergence in recent speciation events. We show that patterns of divergence in key ecological traits are not gradual, but instead seem to follow a pattern of relative stasis interspersed with evolutionary pulses of varying magnitude. We also find evidence that evolutionary pulses generally precede sympatry, and that greater trait disparity is associated with sympatry. These findings suggest that early pulses of trait divergence promote subsequent transitions to sympatry, rather than occurring after sympatry has been established. Incorporating models with evolutionary pulses of varying magnitude into speciation theory may explain why some species pairs achieve rapid sympatry whereas others undergo prolonged geographical exclusion.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: The speciation cycle and phenotypic trait divergence.
Fig. 2: Tempo of body mass divergence for avian sister species.
Fig. 3: Timing of body mass divergence pulses and sympatry.
Fig. 4: Phylogenetic patterns of contact and sympatry across avian sister species.
Fig. 5: Factors associated with the establishment of secondary contact and sympatry in birds.


  1. 1.

    Mayr, E. Systematics and the Origin of Species (Columbia Univ. Press, New York, 1942).

  2. 2.

    Mayr, E. Animal Species and Evolution (Belknap Press, Cambridge, 1963).

    Google Scholar 

  3. 3.

    Mayr, E. & Diamond, J. M. The Birds of Northern Melanesia: Speciation, Ecology and Biogeography (Oxford Univ. Press, Oxford, 2001).

  4. 4.

    Price, T. Speciation in Birds (Roberts and Company, Greenwood, 2008).

    Google Scholar 

  5. 5.

    Weir, J. T. & Price, T. D. Limits to speciation inferred from times to secondary sympatry and ages of hybridizing species along a latitudinal gradient. Am. Nat. 177, 462–469 (2011).

    Google Scholar 

  6. 6.

    Price, T. D. et al. Niche filling slows the diversification of Himalayan songbirds. Nature 509, 222–225 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Pigot, A. L. & Tobias, J. A. Species interactions constrain geographic range expansion over evolutionary time. Ecol. Lett. 16, 330–338 (2013).

    PubMed  PubMed Central  Google Scholar 

  8. 8.

    MacArthur, R. & Levins, R. The limiting similarity, convergence, and divergence of coexisting species. Am. Nat. 101, 377–385 (1967).

    Google Scholar 

  9. 9.

    Rundell, R. J. & Price, T. D. Adaptive radiation, nonadaptive radiation, ecological speciation and nonecological speciation. Trends Ecol. Evol. 24, 394–399 (2009).

    PubMed  Google Scholar 

  10. 10.

    Schluter, D. The Ecology of Adaptive Radiation (Oxford Univ. Press, Oxford, 2000).

    Google Scholar 

  11. 11.

    Bothwell, E., Montgomerie, R., Lougheed, S. C. & Martin, P. R. Closely related species of birds differ more in body size when their ranges overlap-in warm, but not cool, climates. Evolution 69, 1701–1712 (2015).

    PubMed  Google Scholar 

  12. 12.

    Tobias, J. A. et al. Species coexistence and the dynamics of phenotypic evolution in adaptive radiation. Nature 506, 359–363 (2014).

    CAS  PubMed  Google Scholar 

  13. 13.

    Pfennig, D. W. & Pfennig, K. S. Character displacement and the origins of diversity. Am. Nat. 176, S26–S44 (2010).

    PubMed  PubMed Central  Google Scholar 

  14. 14.

    Hunt, G. & Rabosky, D. L. Phenotypic evolution in fossil species: pattern and process. Annu. Rev. Earth Planet. Sci. 42, 421–441 (2014).

    CAS  Google Scholar 

  15. 15.

    Pennell, M. W., Harmon, L. J. & Uyeda, J. C. Is there room for punctuated equilibrium in macroevolution? Trends Ecol. Evol. 29, 23–32 (2014).

    PubMed  Google Scholar 

  16. 16.

    Mayr, E. in Evolution as a Process (eds Huxley, J., Hardy, A. C. & Ford, E. B.) 157–180 (Allen and Unwin, London, 1954).

  17. 17.

    Rundle, H. D. & Nosil, P. Ecological speciation. Ecol. Lett. 8, 336–352 (2005).

    Google Scholar 

  18. 18.

    Futuyma, D. J. On the role of species in anagenesis. Am. Nat. 130, 465–473 (1987).

    Google Scholar 

  19. 19.

    Gingerich, P. Rates of evolution: effects of time and temporal scaling. Science 222, 159–162 (1983).

    CAS  PubMed  Google Scholar 

  20. 20.

    Estes, S. & Arnold, S. J. Resolving the paradox of stasis: models with stabilizing selection explain evolutionary divergence on all timescales. Am. Nat. 169, 227–244 (2007).

    PubMed  Google Scholar 

  21. 21.

    Boag, P. T. & Grant, P. R. Intense natural selection in a population of Darwin’s finches (Geospizinae) in the Galapagos. Science 214, 82–85 (1981).

    CAS  PubMed  Google Scholar 

  22. 22.

    Uyeda, J. C., Hansen, T. F., Arnold, S. J. & Pienaar, J. The million-year wait for macroevolutionary bursts. Proc. Natl Acad. Sci. USA 108, 15908–15913 (2011).

    CAS  PubMed  Google Scholar 

  23. 23.

    Hunt, G., Hopkins, M. J. & Lidgard, S. Simple versus complex models of trait evolution and stasis as a response to environmental change. Proc. Natl Acad. Sci. USA 112, 4885–4890 (2015).

    CAS  PubMed  Google Scholar 

  24. 24.

    Prothero, D. R. et al. Size and shape stasis in late Pleistocene mammals and birds from Rancho La Brea during the Last Glacial–Interglacial cycle. Quat. Sci. Rev. 56, 1–10 (2012).

    Google Scholar 

  25. 25.

    Rabosky, D. L. & Adams, D. C. Rates of morphological evolution are correlated with species richness in salamanders. Evolution 66, 1807–1818 (2012).

    PubMed  Google Scholar 

  26. 26.

    Bokma, F. Time, species, and separating their effects on trait variance in clades. Syst. Biol. 59, 602–607 (2010).

    PubMed  Google Scholar 

  27. 27.

    Seddon, N. et al. Sexual selection accelerates signal evolution during speciation in birds. Proc. R. Soc. B 280, 20131065 (2013).

    PubMed  Google Scholar 

  28. 28.

    Cooney, C. R. et al. Mega-evolutionary dynamics of the adaptive radiation of birds. Nature 542, 344–347 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Marshall, C. R. Five palaeobiological laws needed to understand the evolution of the living biota. Nat. Ecol. Evol. 1, 0165 (2017).

  30. 30.

    Etienne, R. S., Morlon, H. & Lambert, A. Estimating the duration of speciation from phylogenies. Evolution 68, 2430–2440 (2014).

    PubMed  PubMed Central  Google Scholar 

  31. 31.

    Kuchta, S. R. & Wake, D. B. Wherefore and whither the ting species? Copeia 104, 189–201 (2016).

    Google Scholar 

  32. 32.

    Futuyma, D. J. in Macroevolution (eds Serrelli, E. & Gontier, N.) 29–85 (Springer, Berlin, 2015).

  33. 33.

    Weir, J. T. & Wheatcroft, D. A latitudinal gradient in rates of evolution of avian syllable diversity and song length. Proc. R. Soc. B 278, 1713–1720 (2011).

    PubMed  Google Scholar 

  34. 34.

    Sullivan, B. L. et al. eBird: a citizen-based bird observation network in the biological sciences. Biol. Conserv. 142, 2282–2292 (2009).

    Google Scholar 

  35. 35.

    Sullivan, B. L. et al. The eBird enterprise: an integrated approach to development and application of citizen science. Biol. Conserv. 169, 31–40 (2014).

    Google Scholar 

  36. 36.

    Burleigh, J. G., Kimball, R. T. & Braun, E. L. Building the avian tree of life using a large-scale, sparse supermatrix. Mol. Phylogenet. Evol. 84, 53–63 (2015).

    PubMed  Google Scholar 

  37. 37.

    Baiser, B., Valle, D., Zelazny, Z. & Burleigh, J. G. Non-random patterns of invasion and extinction reduce phylogenetic diversity in island bird assemblages. Ecography 41, 361–374 (2017).

    Google Scholar 

  38. 38.

    Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–448 (2012).

    CAS  Google Scholar 

  39. 39.

    Hunt, G., Bell, M. A. & Travis, M. P. Evolution toward a new adaptive optimum: phenotypic evolution in a fossil stickleback lineage. Evolution 62, 700–710 (2008).

    PubMed  Google Scholar 

  40. 40.

    Arnold, S. J. Phenotypic evolution: the ongoing synthesis (American Society of Naturalists address). Am. Nat. 183, 729–746 (2014).

    PubMed  Google Scholar 

  41. 41.

    Bird Species Distribution Maps of the World (BirdLife International and Natureserve, 2014); http://datazone.birdlife.org/species/requestdis

  42. 42.

    Dawideit, B. A., Phillimore, A. B., Laube, I., Leisler, B. & Böhning‐Gaese, K. Ecomorphological predictors of natal dispersal distances in birds. J. Anim. Ecol. 78, 388–395 (2009).

    PubMed  Google Scholar 

  43. 43.

    Claramunt, S., Derryberry, E. P., Remsen, J. V. Jr & Brumfield, R. T. High dispersal ability inhibits speciation in a continental radiation of passerine birds. Proc. R. Soc. B 279, 1567–1574 (2012).

    PubMed  PubMed Central  Google Scholar 

  44. 44.

    Stephens, P. A., Sutherland, W. J. & Freckleton, R. P. What is the Allee effect? Oikos 87, 185–190 (1999).

    Google Scholar 

  45. 45.

    Case, T. J., Holt, R. D., McPeek, M. A. & Keitt, T. H. The community context of species’ borders: ecological and evolutionary perspectives. Oikos 108, 28–46 (2005).

    Google Scholar 

  46. 46.

    Phillimore, A. B. et al. Sympatric speciation in birds is rare: insights from range data and simulations. Am. Nat. 171, 646–657 (2008).

    PubMed  PubMed Central  Google Scholar 

  47. 47.

    Nosil, P. Ecological Speciation (Oxford Univ. Press, Oxford, 2012).

  48. 48.

    Landis, M. J., Schraiber, J. G. & Liang, M. Phylogenetic analysis using Levy processes: finding jumps in the evolution of continuous traits. Syst. Biol. 62, 193–204 (2013).

    CAS  PubMed  Google Scholar 

  49. 49.

    Landis, M. J. & Schraiber, J. G. Pulsed evolution shaped modern vertebrate body sizes. Proc. Natl Acad. Sci. USA 114, 13224–13229 (2017).

    CAS  PubMed  Google Scholar 

  50. 50.

    Harmon, L. J. et al. Early bursts of body size and shape evolution are rare in comparative data. Evolution 64, 2385–2396 (2010).

    PubMed  Google Scholar 

  51. 51.

    Benkman, C. W. Divergent selection drives the adaptive radiation of crossbills. Evolution 57, 1176–1181 (2003).

    PubMed  Google Scholar 

  52. 52.

    Lamichhaney, S. et al. Evolution of Darwin’s finches and their beaks revealed by genome sequencing. Nature 518, 371–375 (2015).

    CAS  PubMed  Google Scholar 

  53. 53.

    Gavrilets, S. Evolution and speciation on holey adaptive landscapes. Trends Ecol. Evol. 12, 307–312 (1997).

    CAS  PubMed  Google Scholar 

  54. 54.

    Friis, G., Aleixandre, P., Rodríguez-Estrella, R., Navarro-Sigüenza, A. G. & Milá, B. Rapid postglacial diversification and long-term stasis within the songbird genus Junco: phylogeographic and phylogenomic evidence. Mol. Ecol. 25, 6175–6195 (2016).

    CAS  PubMed  Google Scholar 

  55. 55.

    Endler, J. A. Geographic Variation, Speciation, and Clines Vol. 10 (Princeton Univ. Press, Princeton, 1977).

  56. 56.

    Futuyma, D. J. Evolutionary constraint and ecological consequences. Evolution 64, 1865–1884 (2010).

    PubMed  Google Scholar 

  57. 57.

    Brown, W. L. & Wilson, E. O. Character displacement. Syst. Zool. 5, 49–64 (1956).

    Google Scholar 

  58. 58.

    Dayan, T. & Simberloff, D. Ecological and community‐wide character displacement: the next generation. Ecol. Lett. 8, 875–894 (2005).

    Google Scholar 

  59. 59.

    Davies, T. J., Meiri, S., Barraclough, T. G. & Gittleman, J. L. Species co-existence and character divergence across carnivores. Ecol. Lett. 10, 146–152 (2007).

    Google Scholar 

  60. 60.

    Drury, J. P., Grether, G. F., Garland, T. & Morlon, H. An assessment of phylogenetic tools for analyzing the interplay between interspecific interactions and phenotypic evolution. Syst. Biol. 67, 413–427 (2017).

    Google Scholar 

  61. 61.

    Roughgarden, J. Competition and theory in community ecology. Am. Nat. 122, 583–601 (1983).

    Google Scholar 

  62. 62.

    Hudson, E. J. & Price, T. D. Pervasive reinforcement and the role of sexual selection in biological speciation. J. Hered. 105, 821–833 (2014).

    PubMed  Google Scholar 

  63. 63.

    Pigot, A. L. & Tobias, J. A. Dispersal and the transition to sympatry in vertebrates. Proc. R. Soc. B 282, 20141929 (2015).

    PubMed  PubMed Central  Google Scholar 

  64. 64.

    Rosenzweig, M. L. Species Diversity in Space and Time (Cambridge Univ. Press, Cambridge, 1995).

  65. 65.

    Rosenblum, E. B. et al. Goldilocks meets Santa Rosalia: an ephemeral speciation model explains patterns of diversification across time scales. J. Evol. Biol. 39, 255–261 (2012).

    Google Scholar 

  66. 66.

    Dynesius, M. & Jansson, R. Persistence of within‐species lineages: a neglected control of speciation rates. Evolution 68, 923–934 (2014).

    PubMed  Google Scholar 

  67. 67.

    Sanderson, M. R8s: inferring absolute rates of molecular evolution and divergence times in the absence of a molecular clock. Bioinformatics 19, 301–302 (2003).

    CAS  PubMed  Google Scholar 

  68. 68.

    Ksepka, D. & Clarke, J. Phylogenetically vetted and stratigraphically constrained fossil calibrations within Aves. Palaeontol. Electron. 18, 1–25 (2015).

    Google Scholar 

  69. 69.

    Wilson, D. S. The adequacy of body size as a niche difference. Am. Nat. 109, 769–784 (1975).

    Google Scholar 

  70. 70.

    Del Hoyo, J., Elliott, A., Sargatal, J., Christie, D. A. & de Juana, E. (eds) Handbook of the Birds of the World Alive (Lynx Edicions, Barcelona, 2015)..

  71. 71.

    Dunning, J. B. Body Masses of Birds of the World (Taylor and Francis Group, Boca Raton, 2008).

    Google Scholar 

  72. 72.

    Dunning, J. B. Update to Body Masses of Birds of the World (Purdue University, 2016); https://ag.purdue.edu/fnr/Documents/WeightBookUpdate.pdf

  73. 73.

    Schoener, T. W. The evolution of bill size differences among sympatric congeneric species of birds. Evolution 19, 189–213 (1965).

    Google Scholar 

  74. 74.

    Miles, D. B. & Ricklefs, R. E. The correlation between ecology and morphology in deciduous forest passerine birds. Ecology 65, 1629–1640 (1984).

    Google Scholar 

  75. 75.

    Ho, L. & Ane, C. A linear-time algorithm for Gaussian and non-Gaussian trait evolution models. Syst. Biol. 63, 397–408 (2014).

    PubMed  Google Scholar 

  76. 76.

    Stoddard, M. C. et al. Avian egg shape: form, function, and evolution. Science 356, 1249–1254 (2017).

    CAS  PubMed  Google Scholar 

  77. 77.

    Chesser, R. T. & Zink, R. M. Modes of speciation in birds: a test of Lynch’s method. Evolution 48, 490–497 (1994).

    PubMed  Google Scholar 

  78. 78.

    Barraclough, T. G. & Vogler, A. P. Detecting the geographical pattern of speciation from species-level phylogenies. Am. Nat. 155, 419–434 (2000).

    PubMed  Google Scholar 

  79. 79.

    Bull, C. Ecology of parapatric distributions. Annu. Rev. Ecol. Syst. 22, 19–36 (1991).

    Google Scholar 

  80. 80.

    R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2012).

  81. 81.

    Calcagno, V. & de Mazancourt, C. glmulti: an R package for easy automated model selection with (generalized) linear models. J. Stat. Softw. 34, 1–29 (2010).

    Google Scholar 

  82. 82.

    Yasukawa, K. Male quality and female choice of mate in the red-winged blackbird (Agelaius phoeniceus). Ecology 62, 922–929 (1981).

    Google Scholar 

  83. 83.

    Grant, P. R. & Grant, B. R. Hybridization, sexual imprinting, and mate choice. Am. Nat. 149, 1–28 (1997).

    Google Scholar 

  84. 84.

    Lovette, I. J. & Hochachka, W. M. Simultaneous effects of phylogenetic niche conservatism and competition on avian community structure. Ecology 87, S14–S28 (2006).

    PubMed  Google Scholar 

Download references


We are grateful to numerous data collectors who contributed to eBird, GenBank and the CRC bird body mass dataset (see Supplementary Information). We also thank N. Alioravainen, E. Braun, S. Jones, R. Kimball, D. Ksepka, M. Neate-Clegg, A. Pigot, A. Ragsdale and G. Zhelezov for data collection and technical assistance. This work was supported by the National Science Foundation (DEB-1208428 to J.G.B.), the Natural Environment Research Council (NE/I028068/1 to J.A.T.) and the Oxford Clarendon Fund and US–UK Fulbright Commission (to C.S.).

Author information




J.G.B. and J.P.M. conceived the study; J.G.B., J.P.M. and J.A.T. designed the conceptual framework and analyses; J.G.B. performed dating analyses and assembled phylogenetic, occurrence and body mass information; J.A.T. and C.S. provided morphometric data; J.P.M. integrated datasets, and designed and performed statistical analyses with significant input from J.G.B., J.A.T. and C.S.; J.P.M. and C.S. produced figures and tables; J.P.M. wrote the manuscript, with significant input from all authors.

Corresponding author

Correspondence to Jay P. McEntee.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Supplementary Figures, Supplementary Tables and Supplementary Code

Reporting Summary

Supplementary Data 1-8

Supplementary Data 1: Sister pair dataset used for analysis of the probability of contact, and of breeding contact, by divergence time. Supplementary Data 2: Sister pair dataset used for GLM designed to find predictors associated with contact and breeding contact. Supplementary Data 3: Sister pairs in contact, used for GLM designed to find predictors associated with sympatry given contact. Supplementary Data 4: Morphological measurements by species. Supplementary Data 5: Log body mass divergence by species pair, used for analyses of body mass divergence tempo and mode. Supplementary Data 6: Species pairs from Burleigh et al. 2015 phylogeny excluded from co-occurrence analyses, with reasons for exlcusion. Supplementary Data 7: Fossil calibrations. Supplementary Data 8: Metadata for all specimens and wild-caught birds used for morphological measurements of the beak and wing. Specimens are listed alphabetically by species. A forthcoming database publication led by J.A.T. will include morphological measurements by specimen

Supplementary Table 9

Multi-model inference of predictor effects for sympatry versus parapatry of bird sister species in contact

Supplementary Table 11

Sensitivity analyses investigating predictor effects for contact versus absence of contact in bird sister species, from an alternate approach to phylogenetic inference and divergence time estimation

Supplementary Table 13

Sensitivity analyses investigating predictor effects for sympatry versus parapatry of bird sister species in contact, from an alternate approach to phylogenetic inference and divergence time estimation

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

McEntee, J.P., Tobias, J.A., Sheard, C. et al. Tempo and timing of ecological trait divergence in bird speciation. Nat Ecol Evol 2, 1120–1127 (2018). https://doi.org/10.1038/s41559-018-0570-y

Download citation

Further reading


Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing