A biodiversity-crisis hierarchy to evaluate and refine conservation indicators

Abstract

The Convention on Biological Diversity and its Strategic Plan for Biodiversity 2011–2020 form the central pillar of the world’s conservation commitment, with 196 signatory nations; yet its capacity to reign in catastrophic biodiversity loss has proved inadequate. Indicators suggest that few of the Convention on Biological Diversity’s Aichi targets that aim to reduce biodiversity loss will be met by 2020. While the indicators have been criticized for only partially representing the targets, a bigger problem is that the indicators do not adequately draw attention to and measure all of the drivers of the biodiversity crisis. Here, we show that many key drivers of biodiversity loss are either poorly evaluated or entirely lacking indicators. We use a biodiversity-crisis hierarchy as a conceptual model linking drivers of change to biodiversity loss to evaluate the scope of current indicators. We find major gaps related to monitoring governments, human population size, corruption and threat-industries. We recommend the hierarchy is used to develop an expanded set of indicators that comprehensively monitor the human behaviour and institutions that drive biodiversity loss and that, so far, have impeded progress towards achieving global biodiversity targets.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: The Biodiversity-crisis hierarchy is used to evaluate the coverage and adequacy of indicators for the Aichi biodiversity targets.

References

  1. 1.

    Ceballos, G., Ehrlich, P. R. & Dirzo, R. Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines. Proc. Natl Acad. Sci. USA 114, E6089–E6096 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Walpole, M. et al. Tracking progress toward the 2010 biodiversity target and beyond. Science 325, 1503–1504 (2009).

    Article  PubMed  Google Scholar 

  3. 3.

    Tittensor, D. P. et al. A mid-term analysis of progress toward international biodiversity targets. Science 346, 241–244 (2014).

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Western, D. The biodiversity crisis: a challenge for biology. Oikos 63, 29–38 (1992).

    Article  Google Scholar 

  5. 5.

    Yap, T. A., Koo, M. S., Ambrose, R. F., Wake, D. B. & Vredenburg, V. T. Averting a North American biodiversity crisis. Science 349, 481–482 (2015).

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Butchart, S. H. M., Di Marco, M. & Watson, J. E. M. Formulating smart commitments on biodiversity: lessons from the Aichi targets. Conserv. Lett. 9, 457–468 (2016).

    Article  Google Scholar 

  7. 7.

    McOwen, C. J. et al. Sufficiency and suitability of global biodiversity indicators for monitoring progress to 2020 targets. Conserv. Lett. 9, 489–494 (2016).

    Article  Google Scholar 

  8. 8.

    Campbell, L. M., Hagerman, S. & Gray, N. J. Producing targets for conservation: science and politics at the Tenth Conference of the Parties to the Convention on Biological Diversity. Glob. Environ. Polit. 14, 41–63 (2014).

    Article  Google Scholar 

  9. 9.

    Rands, M. R. W. et al. Biodiversity conservation: challenges beyond 2010. Science 329, 1298–1303 (2010).

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Liu, J. et al. Systems integration for global sustainability. Science 347, 1258832 (2015).

    Article  PubMed  Google Scholar 

  11. 11.

    Tscherning, K., Helming, K., Krippner, B., Sieber, S. & Paloma, S. G. Y. Does research applying the DPSIR framework support decision making? Land Use Policy 29, 102–110 (2012).

    Article  Google Scholar 

  12. 12.

    Díaz, S. et al. The IPBES Conceptual Framework — connecting nature and people. Curr. Opin. Environ. Sustain. 14, 1–16 (2015).

    Article  Google Scholar 

  13. 13.

    Crist, E., Mora, C. & Engelman, R. The interaction of human population, food production, and biodiversity protection. Science 356, 260–264 (2017).

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Fischer, J. et al. Human behavior and sustainability. Front. Ecol. Environ. 10, 153–160 (2012).

    Article  Google Scholar 

  15. 15.

    Machovina, B., Feeley, K. J. & Ripple, W. J. Biodiversity conservation: the key is reducing meat consumption. Sci. Total Environ. 536, 419–431 (2015).

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Urban, M. C. Accelerating extinction risk from climate change. Science 348, 571–573 (2015).

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Pecl, G. T. et al. Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355, eaai9214 (2017).

    Article  PubMed  Google Scholar 

  18. 18.

    Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373–377 (2017).

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Wilson, S. K. et al. Exploitation and habitat degradation as agents of change within coral reef fish communities. Glob. Change Biol. 14, 2796–2809 (2008).

    Article  Google Scholar 

  20. 20.

    Zhang, X.-P. & Cheng, X.-M. Energy consumption, carbon emissions, and economic growth in China. Ecol. Econ. 68, 2706–2712 (2009).

    Article  Google Scholar 

  21. 21.

    Krausmann, F. et al. Growth in global materials use, GDP and population during the 20th century. Ecol. Econ. 68, 2696–2705 (2009).

    Article  Google Scholar 

  22. 22.

    Hughes, T. P., Day, J. C. & Brodie, J. Securing the future of the Great Barrier Reef. Nat. Clim. Change 5, 508–511 (2015).

    Article  Google Scholar 

  23. 23.

    IPCC Climate Change 2014: Synthesis Report (eds Core Writing Team, Pachauri, R. K. & Meyer, L. A.) (IPCC, 2015).

  24. 24.

    Hughes, T. P. et al. Coral reefs in the Anthropocene. Nature 546, 82–90 (2017).

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Yu, Y., Chen, D., Zhu, B. & Hu, S. Eco-efficiency trends in China, 1978–2010: decoupling environmental pressure from economic growth. Ecol. Indic. 24, 177–184 (2013).

    CAS  Article  Google Scholar 

  26. 26.

    Crowley, K. Up and down with climate politics 2013–2016: the repeal of carbon pricing in Australia. WIREs Clim. Change 8, e458 (2017).

    Article  Google Scholar 

  27. 27.

    Conference of the Parties 21st Session (United Nations Framework Convention on Climate Change 2015); http://unfccc.int/meetings/paris_nov_2015/session/9057.php.

  28. 28.

    Downie, C. Business actors, political resistance, and strategies for policymakers. Energy Policy 108, 583–592 (2017).

    Article  Google Scholar 

  29. 29.

    Aulby, H. & Ogge, M. Greasing the Wheels. The Systemic Weaknesses that Allow Undue Influence by Mining Companies on Government: A QLD Case Study. (The Australia Institute, Canberra, 2016).

    Google Scholar 

  30. 30.

    Aronson, M. F. J. et al. A global analysis of the impacts of urbanization on bird and plant diversity reveals key anthropogenic drivers. Proc. R. Soc. B 281, 20133330 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Seto, K. C., Guneralp, B. & Hutyra, L. R. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc. Natl Acad. Sci. USA 109, 16083–16088 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Newport, J., Shorthouse, D. J. & Manning, A. D. The effects of light and noise from urban development on biodiversity: implications for protected areas in Australia. Ecol. Manag. Restor. 15, 204–214 (2014).

    Article  Google Scholar 

  33. 33.

    Yi, H., Güneralp, B., Kreuter, U. P., Güneralp, İ. & Filippi, A. M. Spatial and temporal changes in biodiversity and ecosystem services in the San Antonio River basin, Texas, from 1984 to 2010. Sci. Total Environ. 619–620, 1259–1271 (2018).

    Article  Google Scholar 

  34. 34.

    Nilon, C. H. et al. Planning for the future of urban biodiversity: a global review of city-scale initiatives. Bioscience 67, 331–341 (2017).

    Article  Google Scholar 

  35. 35.

    de la Cruz, E. E. R. Local political institutions and smart growth: an empirical study of the politics of compact development. Urban Aff. Rev. 45, 218–246 (2009).

    Article  Google Scholar 

  36. 36.

    Radeloff, V. C. et al. Housing growth in and near United States protected areas limits their conservation value. Proc. Natl Acad. Sci. USA 107, 940–945 (2010).

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Groom, C., Mawson, P., Roberts, J. & Mitchell, N. Meeting an expanding human population’s needs whilst conserving a threatened parrot species in an urban environment. WIT Trans. Ecol. Environ. 191, 1199–1212 (2014).

    Article  Google Scholar 

  38. 38.

    Deng, X. Z., Huang, J. K., Rozelle, S. & Uchida, E. Economic growth and the expansion of urban land in China. Urban Stud. 47, 813–843 (2010).

    Article  Google Scholar 

  39. 39.

    Morley, B. Causality between economic growth and immigration: an ARDL bounds testing approach. Econ. Lett. 90, 72–76 (2006).

    Article  Google Scholar 

  40. 40.

    Dolado, J., Goria, A. & Ichino, A. Immigration, human-capital and growth in the host country - evidence from pooled country data. J. Popul. Econ. 7, 193–215 (1994).

    Article  Google Scholar 

  41. 41.

    York, R. Demographic trends and energy consumption in European Union Nations, 1960–2025. Soc. Sci. Res. 36, 855–872 (2007).

    Article  Google Scholar 

  42. 42.

    Mathur, S. Impact of urban growth boundary on housing and land prices: evidence from King County, Washington. Hous. Stud. 29, 128–148 (2014).

    Article  Google Scholar 

  43. 43.

    Landry, S. & Pu, R. L. The impact of land development regulation on residential tree cover: an empirical evaluation using high-resolution IKONOS imagery. Landsc. Urban Plan. 94, 94–104 (2010).

    Article  Google Scholar 

  44. 44.

    Beninde, J., Veith, M. & Hochkirch, A. Biodiversity in cities needs space: a meta-analysis of factors determining intra-urban biodiversity variation. Ecol. Lett. 18, 581–592 (2015).

    Article  PubMed  Google Scholar 

  45. 45.

    Sushinsky, J. R., Rhodes, J. R., Possingham, H. P., Gill, T. K. & Fuller, R. A. How should we grow cities to minimize their biodiversity impacts? Glob. Change Biol. 19, 401–410 (2013).

    Article  Google Scholar 

  46. 46.

    Villaseñor, N. R., Tulloch, A. I. T., Driscoll, D. A., Gibbons, P. & Lindenmayer, D. B. Compact development minimizes the impacts of urban growth on native mammals. J. Appl. Ecol. 54, 794–804 (2017).

    Article  Google Scholar 

  47. 47.

    Dodson, J., Coiacetto, E. & Ellway, C. Corruption in the Australian land development process: identifying aresearch agenda. in Second State of Australian Cities National Conference, Griffith University, Brisbane, 30 November to 2 December 2005 (2006).

  48. 48.

    Murray, C. K. & Frijters, P. Clean money, dirty system: connected landowners capture beneficial land rezoning. J. Urban Econ. 93, 99–114 (2016).

    Article  Google Scholar 

  49. 49.

    Blomqvist, L. et al. Does the shoe fit? Real versus imagined ecological footprints. PLoS Biol. 11, e1001700 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Hortal, J. et al. Seven shortfalls that beset large-scale knowledge of biodiversity. Annu. Rev. Ecol. Evol. Syst. 46, 523–549 (2015).

    Article  Google Scholar 

  51. 51.

    Schmeller, D. S. et al. A suite of essential biodiversity variables for detecting critical biodiversity change. Biol. Rev. 93, 55–71 (2017).

    Article  PubMed  Google Scholar 

  52. 52.

    Worker, J. & De Silva, L. The Environmental Democracy Index Technical Note (World Resources Institute, Washington DC, 2015).

    Google Scholar 

  53. 53.

    Ritchie, E. G., Driscoll, D. A. & Maron, M. Communication: Science censorship is a global issue. Nature 542, 165–165 (2017).

    CAS  Article  PubMed  Google Scholar 

  54. 54.

    Westwood, A., Walsh, K. & Gibbs, K. United States: Learn from Canada’s dark age of science. Nature 542, 165–165 (2017).

    CAS  Article  PubMed  Google Scholar 

  55. 55.

    Carroll, C. et al. Defending the scientific integrity of conservation-policy processes. Conserv. Biol. 31, 967–975 (2017).

    Article  PubMed  Google Scholar 

  56. 56.

    MacGregor, S. Barriers to the influence of evidence on policy: are politicians the problem? Drugs (Abingdon Engl.) 20, 225–233 (2013).

    Google Scholar 

  57. 57.

    Lijphart, A. From the politics of accommodation to adversarial politics in the Netherlands: a reassessment. West Eur. Polit. 12, 139–153 (1989).

    Article  Google Scholar 

  58. 58.

    Riedy, C. & Diesendorf, M. Financial subsidies to the Australian fossil fuel industry. Energy Policy 31, 125–137 (2003).

    Article  Google Scholar 

  59. 59.

    Gao, L. & Bryan, B. A. Finding pathways to national-scale land-sector sustainability. Nature 544, 217–222 (2017).

    CAS  Article  PubMed  Google Scholar 

  60. 60.

    Lutz, W. & Qiang, R. Determinants of human population growth. Philos. Trans. R. Soc. Lond. B 357, 1197–1210 (2002).

    Article  Google Scholar 

  61. 61.

    Juran, S. & Pistiner, A. L. The 2010 round of population and housing censuses (2005–2014). Stat. J. IAOS 33, 399–406 (2017).

    Article  Google Scholar 

  62. 62.

    Lux, S., Crook, T. R. & Woehr, D. J. Mixing business with politics: a meta-analysis of the antecedents and outcomes of corporate political activity. J. Manag. 37, 223–247 (2011).

    Google Scholar 

  63. 63.

    Teye, J. K. Corruption and illegal logging in Ghana. Int. Dev. Plan. Rev. 35, 1–19 (2013).

    Article  Google Scholar 

  64. 64.

    Petermann, A., Guzman, J. I. & Tilton, J. E. Mining and corruption. Resour. Policy 32, 91–103 (2007).

    Article  Google Scholar 

  65. 65.

    Kaufmann, D., Kraay, A. & Mastruzzi, M. The worldwide governance indicators: methodology and analytical issues. Hague J. Rule Law 3, 220–246 (2011).

    Article  Google Scholar 

  66. 66.

    Klopp, J. M. & Petretta, D. L. The urban sustainable development goal: indicators, complexity and the politics of measuring cities. Cities 63, 92–97 (2017).

    Article  Google Scholar 

  67. 67.

    Joppa, L. N. et al. Filling in biodiversity threat gaps. Science 352, 416–418 (2016).

    CAS  Article  PubMed  Google Scholar 

  68. 68.

    Global Roads Open Access Data Set, Version 1 (gROADSv1) (CIESIN, Columbia University, InformationTechnology Outreach Services, University of Georgia, NASA SEDAC, Palisades, 2013).

  69. 69.

    Ibisch, P. L. et al. A global map of roadless areas and their conservation status. Science 354, 1423–1427 (2016).

    CAS  Article  PubMed  Google Scholar 

  70. 70.

    Lenzen, M. et al. International trade drives biodiversity threats in developing nations. Nature 486, 109–112 (2012).

    CAS  Article  PubMed  Google Scholar 

  71. 71.

    Moran, D. & Kanemoto, K. Identifying species threat hotspots from global supply chains. Nat. Ecol. Evol. 1, 0023 (2017).

    Article  Google Scholar 

  72. 72.

    Jiang, B., Li, D. Y., Larsen, L. & Sullivan, W. C. A dose-response curve describing the relationship between urban tree cover density and self-reported stress recovery. Environ. Behav. 48, 607–629 (2016).

    Article  Google Scholar 

  73. 73.

    Wall, D. H., Nielsen, U. N. & Six, J. Soil biodiversity and human health. Nature 528, 69–76 (2015).

    CAS  PubMed  Google Scholar 

  74. 74.

    Gill, D. A. et al. Capacity shortfalls hinder the performance of marine protected areas globally. Nature 543, 665–669 (2017).

    CAS  Article  PubMed  Google Scholar 

  75. 75.

    Reyers, B. et al. Getting the measure of ecosystem services: a social-ecological approach. Front. Ecol. Environ. 11, 268–273 (2013).

    Article  Google Scholar 

  76. 76.

    Bennett, E. M. Research frontiers in ecosystem service science. Ecosystems 20, 31–37 (2017).

    Article  Google Scholar 

  77. 77.

    Geijzendorffer, I. R. et al. Ecosystem services in global sustainability policies. Environ. Sci. Policy 74, 40–48 (2017).

    Article  Google Scholar 

  78. 78.

    Lebel, L., Wattana, S. & Talerngsri, P. Assessments of ecosystem services and human well-being in Thailand build and create demand for coproductive capacity. Ecol. Soc. 20, 12 (2015).

    Article  Google Scholar 

  79. 79.

    Miyasaka, T., Le, Q., Okuro, T., Zhao, X. Y. & Takeuchi, K. Agent-based modeling of complex social-ecological feedback loops to assess multi-dimensional trade-offs in dryland ecosystem services. Landsc. Ecol. 32, 707–727 (2017).

    Article  Google Scholar 

  80. 80.

    Moreno-Pires, S. & Fidélis, T. A proposal to explore the role of sustainability indicators in local governance contexts: the case of Palmela, Portugal. Ecol. Indic. 23, 608–615 (2012).

    Article  Google Scholar 

  81. 81.

    Fulton, E. A., Smith, A. D. M. & Punt, A. E. Which ecological indicators can robustly detect effects of fishing? ICES J. Mar. Sci. 62, 540–551 (2005).

    Article  Google Scholar 

  82. 82.

    Collen, B. & Nicholson, E. Taking the measure of change. Science 346, 166–167 (2014).

    CAS  Article  PubMed  Google Scholar 

  83. 83.

    Ferrier, S. et al. (eds). Summary for Policymakers of the Methodological Assessment of Scenarios and Models of Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (Secretariat of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, Bonn, 2016).

  84. 84.

    Griggs, D. et al. An integrated framework for sustainable development goals. Ecol. Soc. 19, 49 (2014).

    Article  Google Scholar 

  85. 85.

    Ehrlich, P. R. & Holdren, J. Impact of population growth. Science 171, 1212–1217 (1971).

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank D. Tittensor, S. Butchart, G. Mace, M. McGeoch, B. Brook and G. Hays for helpful suggestions on earlier drafts.

Author information

Affiliations

Authors

Contributions

D.A.D., T.M.N., E.G.R. and T.S.D. conceived the ideas, with L.M.B., E.N. and B.A.B. contributing further ideas throughout writing. L.M.B. and E.N. provided expert guidance on indicator concepts. D.A.D. lead writing, analysis and synthesis, with contributions from B.A.B., T.M.N., E.G.R. and T.S.D. T.S.D. helped with Fig. 1 and provided additional feedback, writing and proofing.

Corresponding author

Correspondence to Don A. Driscoll.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary methods, Supplementary Tables 1–4, Supplementary references.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Driscoll, D.A., Bland, L.M., Bryan, B.A. et al. A biodiversity-crisis hierarchy to evaluate and refine conservation indicators. Nat Ecol Evol 2, 775–781 (2018). https://doi.org/10.1038/s41559-018-0504-8

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing