The exceptional value of intact forest ecosystems


As the terrestrial human footprint continues to expand, the amount of native forest that is free from significant damaging human activities is in precipitous decline. There is emerging evidence that the remaining intact forest supports an exceptional confluence of globally significant environmental values relative to degraded forests, including imperilled biodiversity, carbon sequestration and storage, water provision, indigenous culture and the maintenance of human health. Here we argue that maintaining and, where possible, restoring the integrity of dwindling intact forests is an urgent priority for current global efforts to halt the ongoing biodiversity crisis, slow rapid climate change and achieve sustainability goals. Retaining the integrity of intact forest ecosystems should be a central component of proactive global and national environmental strategies, alongside current efforts aimed at halting deforestation and promoting reforestation.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: The global extent of intact forest.
Fig. 2: Forest degradation and carbon loss.


  1. 1.

    Mackey, B. et al. Policy options for the world’s primary forests in multilateral environmental agreements. Conserv. Lett. 8, 139–147 (2015).

    Google Scholar 

  2. 2.

    MacDicken, K. et al. Global Forest Resources Assessment 2015: How are the World’s Forests Changing? 2nd edn (FAO, Rome, 2016).

  3. 3.

    Potapov, P. et al. The last frontiers of wilderness: tracking loss of intact forest landscapes from 2000 to 2013. Sci. Adv. 3, e1600821 (2017).

    PubMed  PubMed Central  Google Scholar 

  4. 4.

    Venter, O. et al. Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation. Nat. Commun. 7, 12558 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Redford, K. H. The empty forest. Bioscience 42, 412–422 (1992).

    Google Scholar 

  6. 6.

    Adoption of the Paris Agreement: Proposal by the President Draft Decision -/CP.21 (UNFCCC, Geneva, 2015).

  7. 7.

    Progress Towards the Sustainable Development Goals: Report of the Secretary-General (UN Economic and Social Council, 2016).

  8. 8.

    Progress on the New York Declaration on Forests Achieving Collective Forest Goals: Updates on Goals 1-10 (Climate Focus, 2016).

  9. 9.

    Thompson, I. D. et al. An operational framework for defining and monitoring forest degradation. Ecol. Soc. 18, 20 (2013).

    Google Scholar 

  10. 10.

    Ghazoul, J. & Chazdon, R. Degradation and recovery in changing forest landscapes: a multiscale conceptual framework. Annu. Rev. Environ. Resour. 42, 161–188 (2017).

    Google Scholar 

  11. 11.

    Zarin, D. J. et al. Can carbon emissions from tropical deforestation drop by 50% in 5 years?. Glob. Change Biol. 22, 1336–1347 (2016).

    Google Scholar 

  12. 12.

    Houghton, R. A., Byers, B. & Nassikas, A. A. A role for tropical forests in stabilizing atmospheric CO2. Nat. Clim. Change 5, 1022–1023 (2015).

    Google Scholar 

  13. 13.

    Balmford, A., Gaston, K. J., Blyth, S., James, A. & Kapos, V. Global variation in terrestrial conservation costs, conservation benefits, and unmet conservation needs. Proc. Natl Acad. Sci. USA 100, 1046–1050 (2003).

  14. 14.

    Gibson, L. et al. Primary forests are irreplaceable for sustaining tropical biodiversity. Nature 478, 378–381 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Lewis, S. L., Edwards, D. P. & Galbraith, D. Increasing human dominance of tropical forests. Science 349, 827–832 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    De Leo, G. & Levin, S. The multifaceted aspects of ecosystem integrity. Conserv. Ecol. 1, 3 (1997).

    Google Scholar 

  17. 17.

    Edwards, D. P., Tobias, J. A., Sheil, D., Meijaard, E. & Laurance, W. F. Maintaining ecosystem function and services in logged tropical forests. Trends Ecol. Evol. 29, 511–520 (2014).

    PubMed  PubMed Central  Google Scholar 

  18. 18.

    Lindenmayer, D., Thorn, S. & Banks, S. Please do not disturb ecosystems further. Nat. Ecol. Evol. 1, 0031 (2017).

    Google Scholar 

  19. 19.

    Scheffers, B. R. et al. The broad footprint of climate change from genes to biomes to people. Science 354, aaf7671 (2016).

    Google Scholar 

  20. 20.

    Le Quéré, C. et al. Global carbon budget 2016. Earth Syst. Sci. Data 8, 605–649 (2016).

    Google Scholar 

  21. 21.

    Sanderson, B. M., O’Neill, B. C. & Tebaldi, C. What would it take to achieve the Paris temperature targets? Geophys. Res. Lett. 43, 7133–7142 (2016).

    Google Scholar 

  22. 22.

    Houghton, R. A. Carbon emissions and the drivers of deforestation and forest degradation in the tropics. Curr. Opin. Environ. Sustain. 4, 597–603 (2012).

  23. 23.

    Keith, H. et al. Managing temperate forests for carbon storage: impacts of logging versus forest protection on carbon stocks. Ecosphere 5, 1–34 (2014).

    CAS  Google Scholar 

  24. 24.

    Page, S. E., Rieley, J. O. & Banks, C. J. Global and regional importance of the tropical peatland carbon pool. Glob. Change Biol. 17, 798–818 (2011).

    Google Scholar 

  25. 25.

    Turetsky, M. R. et al. Global vulnerability of peatlands to fire and carbon loss. Nat. Geosci. 8, 11–14 (2015).

    CAS  Google Scholar 

  26. 26.

    Zimmerman, B. L. & Kormos, C. F. Prospects for sustainable logging in tropical forests. Bioscience 62, 479–487 (2012).

    Google Scholar 

  27. 27.

    Haddad, N. M. et al. Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci. Adv. 1, e1500052 (2015).

    PubMed  PubMed Central  Google Scholar 

  28. 28.

    Chaplin-Kramer, R. et al. Degradation in carbon stocks near tropical forest edges. Nat. Commun. 6, 10158 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Bello, C. et al. Defaunation affects carbon storage in tropical forests. Sci. Adv. 1, e1501105 (2015).

    PubMed  PubMed Central  Google Scholar 

  30. 30.

    Sobral, M. et al. Mammal diversity influences the carbon cycle through trophic interactions in the Amazon. Nat. Ecol. Evol. 1, 1670–1676 (2017).

    Google Scholar 

  31. 31.

    Peres, C. A., Emilio, T., Schietti, J., Desmoulière, S. J. M. & Levi, T. Dispersal limitation induces long-term biomass collapse in overhunted Amazonian forests. Proc. Natl Acad. Sci. USA 113, 892–897 (2016).

  32. 32.

    Robinson, J. G. & Bennett, E. L (eds) Hunting for Sustainability in Tropical Forests (Columbia Univ. Press, New York, 2000).

  33. 33.

    Maisels, F. et al. Devastating decline of forest elephants in Central Africa. PLoS ONE 8, e59469 (2013).

  34. 34.

    Lewis, S. L. et al. Increasing carbon storage in intact African tropical forests. Nature 457, 1003–1006 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Luyssaert, S. et al. Old-growth forests as global carbon sinks. Nature 455, 213–215 (2008).

    CAS  Google Scholar 

  36. 36.

    Houghton, R. A. The emissions of carbon from deforestation and degradation in the tropics: past trends and future potential. Carbon Manag. 4, 539–546 (2013).

  37. 37.

    Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).

    CAS  Google Scholar 

  38. 38.

    Griscom, B. W. et al. Natural climate solutions. Proc. Natl Acad. Sci. USA 114, 11645–11650 (2017).

  39. 39.

    Bongers, F., Chazdon, R., Poorter, L. & Peña-Claros, M. The potential of secondary forests. Science 348, 642–643 (2015).

    CAS  Google Scholar 

  40. 40.

    Pielke, R. A., Mahmood, R. & McAlpine, C. Land’s complex role in climate change. Phys. Today 69, 40–46 (2016).

    Google Scholar 

  41. 41.

    Sheil, D. & Murdiyarso, D. How forests attract rain: an examination of a new hypothesis. Bioscience 59, 341–347 (2009).

    Google Scholar 

  42. 42.

    Bonan, G. B. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320, 1444–1449 (2008).

    CAS  Google Scholar 

  43. 43.

    Deo, R. C. et al. Impact of historical land cover change on daily indices of climate extremes including droughts in eastern Australia. Geophys. Res. Lett. 36, L08705 (2009).

    Google Scholar 

  44. 44.

    Medvigy, D., Walko, R. L., Otte, M. J. & Avissar, R. Simulated changes in northwest US climate in response to Amazon deforestation. J. Clim. 26, 9115–9136 (2013).

    Google Scholar 

  45. 45.

    Ahlström, A. et al. The dominant role of semi-arid ecosystems in the trend and variability of the land CO2 sink. Science 348, 895–899 (2015).

    Google Scholar 

  46. 46.

    D’Odorico, P. et al. Ecohydrology of terrestrial ecosystems. Bioscience 60, 898–907 (2010).

    Google Scholar 

  47. 47.

    Ludwig, D., Brock, W. & Carpenter, S. Uncertainty in discount models and environmental accounting. Ecol. Soc. 10, 13 (2005).

    Google Scholar 

  48. 48.

    Vertessy, R. A., Watson, F. G. R. & Sharon, K. O. Factors determining relations between stand age and catchment water balance in mountain ash forests. For. Ecol. Manag. 143, 13–26 (2001).

  49. 49.

    Alila, Y., Kuras, P. K., Schnorbus, M. & Hudson, R. Forests and floods: a new paradigm sheds light on age-old controversies. Water Resour. Res. 45, W08416 (2009).

    Google Scholar 

  50. 50.

    Brookhuis, B. J. & Hein, L. G. The value of the flood control service of tropical forests: a case study for Trinidad. For. Policy Econ. 62, 118–124 (2016).

    Google Scholar 

  51. 51.

    Maxwell, S. L., Fuller, R. A., Brooks, T. M. & Watson, J. E. M. Biodiversity: the ravages of guns, nets and bulldozers. Nature 536, 143–145 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Pimm, S. L. et al. The biodiversity of species and their rates of extinction, distribution, and protection. Science 344, 1246752 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).

    CAS  Google Scholar 

  54. 54.

    Morales-Hidalgo, D., Oswalt, S. N. & Somanathan, E. Status and trends in global primary forest, protected areas, and areas designated for conservation of biodiversity from the Global Forest Resources Assessment 2015. For. Ecol. Manag. 352, 68–77 (2015).

  55. 55.

    Venier, L. A. et al. Effects of natural resource development on the terrestrial biodiversity of Canadian boreal forests. Environ. Rev. 22, 457–490 (2014).

    Google Scholar 

  56. 56.

    Laurance, W. F. et al. The fate of Amazonian forest fragments: a 32-year investigation. Biol. Conserv. 144, 56–67 (2011).

    Google Scholar 

  57. 57.

    Peres, C. A. Why we need megareserves in Amazonia. Conserv. Biol. 19, 728–733 (2005).

    Google Scholar 

  58. 58.

    Lortkipanidze, B. Brown bear distribution and status in the South Caucasus. Ursus 21, 97–103 (2010).

    Google Scholar 

  59. 59.

    Festa-Bianchet, M., Ray, J. C., Boutin, S., Côté, S. D. & Gunn, A. Conservation of caribou (Rangifer tarandus) in Canada: an uncertain future. Can. J. Zool. 89, 419–434 (2011).

    Google Scholar 

  60. 60.

    Broadbent, E. N. et al. Forest fragmentation and edge effects from deforestation and selective logging in the Brazilian Amazon. Biol. Conserv. 141, 1745–1757 (2008).

    Google Scholar 

  61. 61.

    Hermy, M. & Verheyen, K. Legacies of the past in the present-day forest biodiversity: a review of past land-use effects on forest plant species composition and diversity. Ecol. Res. 22, 361–371 (2007).

  62. 62.

    Lindenmayer, D. B. et al. How to make a common species rare: a case against conservation complacency. Biol. Conserv. 144, 1663–1672 (2011).

    Google Scholar 

  63. 63.

    Ripple, W. J. et al. Collapse of the world’s largest herbivores. Sci. Adv. 1, e1400103 (2015).

    PubMed  PubMed Central  Google Scholar 

  64. 64.

    Gray, T. N. E., Prum, S., Pin, C. & Phan, C. Distance sampling reveals Cambodia’s Eastern Plains Landscape supports the largest global population of the endangered banteng Bos javanicus. Oryx 46, 563–566 (2012).

    Google Scholar 

  65. 65.

    Barlow, J. et al. Anthropogenic disturbance in tropical forests can double biodiversity loss from deforestation. Nature 535, 144–147 (2016).

    CAS  Google Scholar 

  66. 66.

    Edwards, D. P. The rainforest’s ‘do not disturb’ signs. Nature 535, 44–46 (2016).

    CAS  Google Scholar 

  67. 67.

    Peres, C. A. Synergistic effects of subsistence hunting and habitat fragmentation on Amazonian forest vertebrates. Conserv. Biol. 15, 1490–1505 (2001).

    Google Scholar 

  68. 68.

    Betts, M. G. et al. Global forest loss disproportionately erodes biodiversity in intact landscapes. Nature 547, 441–444 (2017).

    CAS  Google Scholar 

  69. 69.

    Miraldo, A. et al. An Anthropocene map of genetic diversity. Science 353, 1532–1535 (2016).

    CAS  Google Scholar 

  70. 70.

    Byron, N. & Arnold, M. What futures for the people of the tropical forests? World Dev. 27, 789–805 (1999).

    Google Scholar 

  71. 71.

    Lévi-Strauss, C. The Savage Mind (Univ. Chicago Press, Chicago, 1966).

  72. 72.

    Johnson, C. N., Bradshaw, C. J. A., Cooper, A., Gillespie, R. & Brook, B. W. Rapid megafaunal extinction following human arrival throughout the New World. Quat. Int. 308, 273–277 (2013).

    Google Scholar 

  73. 73.

    Hutterer, K. L. in People of the Tropical Rain Forest (eds Denslow, J. S. & Padoch, C.) 63–72 (Univ. California Press, Washington DC, 1988).

  74. 74.

    Mercader, J. Forest people: the role of African rainforests in human evolution and dispersal. Evol. Anthropol. 11, 117–124 (2002).

    Google Scholar 

  75. 75.

    Robinson, J. G. & Bennett, E. L. (eds) in Hunting for Sustainability in Tropical Forests 13–30 (Columbia Univ. Press, New York, 2000).

  76. 76.

    Bennett, E. L. & Robinson, J. G. Hunting of Wildlife in Tropical Forests: Implications for Biodiversity and Forest Peoples Biodiversity Studies Impact Series Paper No. 76 (World Bank, Washington DC, 2000).

  77. 77.

    Levis, C. et al. Persistent effects of pre-Columbian plant domestication on Amazonian forest composition. Science 355, 925–931 (2017).

    CAS  Google Scholar 

  78. 78.

    Schmidt, M. J. & Heckenberger, M. J. in Amazonian Dark Earths: Wim Sombroek's Vision (eds Woods, W. I. et al.) 163–191 (Springer, Dordrecht, 2009).

  79. 79.

    Foley, J. A. et al. Amazonia revealed: forest degradation and loss of ecosystem goods and services in the Amazon Basin. Front. Ecol. Environ. 5, 25–32 (2007).

    Google Scholar 

  80. 80.

    Rozzi, R. Biocultural ethics: recovering the vital links between the inhabitants, their habits, and habitats. Environ. Ethics 34, 27–50 (2012).

    Google Scholar 

  81. 81.

    Southgate, D., Wasserstrom, R. & Reider, S. Oil development, deforestation, and indigenous populations in the Ecuadorian Amazon. Lat. Am. Stud. Assoc. 11, 1–38 (2009).

  82. 82.

    Bedoya Garland, E. in The Social Causes of Environmental Destruction in Latin America (eds Painter, M. & Durham, W. H.) 217–248 (Univ. Michigan Press, Ann Arbor, 1995).

  83. 83.

    Demmer, M. J. & Overman, J. P. M. Indigenous People Conserving the Rain Forest? The Effect of Wealth and Markets on the Economic Behaviour of Tawahka Amerindians in Honduras (Tropenbos Foundation, 2001).

  84. 84.

    Godoy, R. et al. Household determinants of deforestation by Amerindians in Honduras. World Dev. 25, 977–987 (1997).

    Google Scholar 

  85. 85.

    Reyes-García, V. et al. Indigenous land reconfiguration and fragmented institutions: a historical political ecology of Tsimane’lands (Bolivian Amazon). J. Rural Stud. 34, 282–291 (2014).

    Google Scholar 

  86. 86.

    Sirén, A. Changing Interactions Between Humans and Nature in Sarayaku, Ecuadorian Amazon. PhD thesis, Swedish Univ. Agricultural Sciences (2004).

  87. 87.

    Sirén, A. H. Population growth and land use intensification in a subsistence-based indigenous community in the Amazon. Hum. Ecol. 35, 669–680 (2007).

    Google Scholar 

  88. 88.

    Luz, A. C. et al. How does cultural change affect indigenous peoples’ hunting activity? An empirical study among the Tsimane’in the Bolivian Amazon. Conserv. Soc. 13, 382–394 (2015).

    Google Scholar 

  89. 89.

    Gross, D. R. et al. Ecology and acculturation among native peoples of central Brazil. Science 206, 1043–1050 (1979).

    CAS  Google Scholar 

  90. 90.

    Sheil, D. et al. The Impacts and Opportunities of Oil Palm in Southeast Asia: What do We Know and What do We Need to Know? (Center for International Forestry Research, Bogor, 2009).

  91. 91.

    Finer, M., Jenkins, C. N., Pimm, S. L., Keane, B. & Ross, C. Oil and gas projects in the western Amazon: threats to wilderness, biodiversity, and indigenous peoples. PLoS ONE 3, e2932 (2008).

  92. 92.

    Olivero, J. et al. Distribution and numbers of pygmies in Central African forests. PLoS ONE 11, e0144499 (2016).

  93. 93.

    Parlee, B. L. Avoiding the resource curse: indigenous communities and Canada’s oil sands. World Dev. 74, 425–436 (2015).

    Google Scholar 

  94. 94.

    Barraclough, S. & Ghimire, K. Forests and Livelihoods: The Social Dynamics of Deforestation in Developing Countries (Springer, London, 1995).

  95. 95.

    Oliveira, P. J. C. et al. Land-use allocation protects the Peruvian Amazon. Science 317, 1233–1236 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. 96.

    Colfer, C. J. P. Human Health and Forests: A Global Overview of Issues, Practice and Policy (Routledge, London, 2012).

  97. 97.

    Karjalainen, E., Sarjala, T. & Raitio, H. Promoting human health through forests: overview and major challenges. Environ. Health Prev. Med. 15, 1–8 (2010).

    PubMed  PubMed Central  Google Scholar 

  98. 98.

    Shanley, P. & Luz, L. The impacts of forest degradation on medicinal plant use and implications for health care in eastern Amazonia. Bioscience 53, 573–584 (2003).

    Google Scholar 

  99. 99.

    Koplitz, S. N. et al. Public health impacts of the severe haze in equatorial Asia in September–October 2015: demonstration of a new framework for informing fire management strategies to reduce downwind smoke exposure. Environ. Res. Lett. 11, 94023 (2016).

    Google Scholar 

  100. 100.

    Laurance, W. F. Forest–climate interactions in fragmented tropical landscapes. Phil. Trans. R. Soc. Lond. B 359, 345–352 (2004).

  101. 101.

    Murray, C. J. L. et al. Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380, 2197–2223 (2012).

  102. 102.

    Jones, K. E. et al. Global trends in emerging infectious diseases. Nature 451, 990–993 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. 103.

    Myers, S. S. & Patz, J. A. Emerging threats to human health from global environmental change. Annu. Rev. Environ. Resour. 34, 223–252 (2009).

    Google Scholar 

  104. 104.

    Fornace, K. M. et al. Association between landscape factors and spatial patterns of Plasmodium knowlesi infections in Sabah, Malaysia. Emerg. Infect. Dis. 22, 201–208 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. 105.

    Dunn, R. R. Global mapping of ecosystem disservices: the unspoken reality that nature sometimes kills us. Biotropica 42, 555–557 (2010).

    Google Scholar 

  106. 106.

    Murray, K. A. & Daszak, P. Human ecology in pathogenic landscapes: two hypotheses on how land use change drives viral emergence. Curr. Opin. Virol. 3, 79–83 (2013).

    PubMed  PubMed Central  Google Scholar 

  107. 107.

    Vasilakis, N., Cardosa, J., Hanley, K. A., Holmes, E. C. & Weaver, S. C. Fever from the forest: prospects for the continued emergence of sylvatic dengue virus and its impact on public health. Nat. Rev. Microbiol. 9, 532–541 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. 108.

    Ali, S. et al. Environmental and social change drive the explosive emergence of Zika virus in the Americas. PLoS Negl. Trop. Dis. 11, e0005135 (2017).

    PubMed  PubMed Central  Google Scholar 

  109. 109.

    Jonsson, C. B., Figueiredo, L. T. M. & Vapalahti, O. A global perspective on hantavirus ecology, epidemiology, and disease. Clin. Microbiol. Rev. 23, 412–441 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. 110.

    Norris, D. E. Mosquito-borne diseases as a consequence of land use change. Ecohealth 1, 19–24 (2004).

    Google Scholar 

  111. 111.

    Hahn, M. B., Gangnon, R. E., Barcellos, C., Asner, G. P. & Patz, J. A. Influence of deforestation, logging, and fire on malaria in the Brazilian Amazon. PLoS ONE 9, e85725 (2014).

  112. 112.

    Chazdon, R. L. Beyond deforestation: restoring forests and ecosystem services on degraded lands. Science 320, 1458–1460 (2008).

    CAS  Google Scholar 

  113. 113.

    Putz, F. E. & Redford, K. H. The importance of defining ‘forest’: tropical forest degradation, deforestation, long-term phase shifts, and further transitions. Biotropica 42, 10–20 (2010).

    Google Scholar 

  114. 114.

    Laurance, W. F., Goosem, M. & Laurance, S. G. W. Impacts of roads and linear clearings on tropical forests. Trends Ecol. Evol. 24, 659–669 (2009).

    PubMed  PubMed Central  Google Scholar 

  115. 115.

    Asner, G. P. et al. Condition and fate of logged forests in the Brazilian Amazon. Proc. Natl Acad. Sci. USA 103, 12947–12950 (2006).

  116. 116.

    Giam, X., Clements, G. R., Aziz, S. A., Chong, K. Y. & Miettinen, J. Rethinking the ‘back to wilderness’ concept for Sundaland’s forests. Biol. Conserv. 144, 3149–3152 (2011).

    Google Scholar 

  117. 117.

    Berry, N. J. et al. The high value of logged tropical forests: lessons from northern Borneo. Biodivers. Conserv. 19, 985–997 (2010).

    Google Scholar 

  118. 118.

    Barlow, J. & Peres, C. A. Fire-mediated dieback and compositional cascade in an Amazonian forest. Phil. Trans. R. Soc. B 363, 1787–1794 (2008).

  119. 119.

    Thompson, J. R., Spies, T. A. & Ganio, L. M. Reburn severity in managed and unmanaged vegetation in a large wildfire. Proc. Natl Acad. Sci. USA 104, 10743–10748 (2007).

  120. 120.

    Taylor, C., McCarthy, M. A. & Lindenmayer, D. B. Nonlinear effects of stand age on fire severity. Conserv. Lett. 7, 355–370 (2014).

    Google Scholar 

  121. 121.

    Stephens, S. L. et al. Managing forests and fire in changing climates. Science 342, 41–42 (2013).

    CAS  Google Scholar 

  122. 122.

    Wang, X. et al. Increasing frequency of extreme fire weather in Canada with climate change. Clim. Change 130, 573–586 (2015).

    Google Scholar 

  123. 123.

    Bowman, D. Ecohydrology: when will the jungle burn? Nat. Clim. Change 7, 390–391 (2017).

    Google Scholar 

  124. 124.

    Lindenmayer, D. B., Hobbs, R. J., Likens, G. E., Krebs, C. J. & Banks, S. C. Newly discovered landscape traps produce regime shifts in wet forests. Proc. Natl Acad. Sci. USA 108, 15887–15891 (2011).

  125. 125.

    Côté, I. M., Darling, E. S. & Brown, C. J. Interactions among ecosystem stressors and their importance in conservation. Proc. R. Soc. B 283, 20152592 (2016).

    Google Scholar 

  126. 126.

    Thompson, I., Mackey, B., McNulty, S. & Mosseler, A. Forest Resilience, Biodiversity, and Climate Change Technical Series No. 43 (Secretariat of the Convention on Biological Diversity, Montreal, 2009).

  127. 127.

    Mackey, B. G., Watson, J. E. M., Hope, G. & Gilmore, S. Climate change, biodiversity conservation, and the role of protected areas: an Australian perspective. Biodiversity 9, 11–18 (2008).

    Google Scholar 

  128. 128.

    Alberto, F. J. et al. Potential for evolutionary responses to climate change – evidence from tree populations. Glob. Change Biol. 19, 1645–1661 (2013).

    Google Scholar 

  129. 129.

    Watson, J. E. M., Iwamura, T. & Butt, N. Mapping vulnerability and conservation adaptation strategies under climate change. Nat. Clim. Change 3, 989–994 (2013).

    Google Scholar 

  130. 130.

    Shoo, L. P., Storlie, C., VanDerWal, J., Little, J. & Williams, S. E. Targeted protection and restoration to conserve tropical biodiversity in a warming world. Glob. Change Biol. 17, 186–193 (2011).

    Google Scholar 

  131. 131.

    Sgro, C. M., Lowe, A. J. & Hoffmann, A. A. Building evolutionary resilience for conserving biodiversity under climate change. Evol. Appl. 4, 326–337 (2011).

    Google Scholar 

  132. 132.

    Hole, D. G. et al. Projected impacts of climate change on a continent-wide protected area network. Ecol. Lett. 12, 420–431 (2009).

    Google Scholar 

  133. 133.

    Saleska, S. R., Didan, K., Huete, A. R. & Da Rocha, H. R. Amazon forests green-up during 2005 drought. Science 318, 612 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. 134.

    Piao, S. et al. Footprint of temperature changes in the temperate and boreal forest carbon balance. Geophys. Res. Lett. 36, L07404 (2009).

    Google Scholar 

  135. 135.

    Rose, R. A. et al. Ten ways remote sensing can contribute to conservation. Conserv. Biol. 29, 350–359 (2015).

    Google Scholar 

  136. 136.

    Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).

    CAS  Google Scholar 

  137. 137.

    Kim, D.-H., Sexton, J. O. & Townshend, J. R. Accelerated deforestation in the humid tropics from the 1990s to the 2000s. Geophys. Res. Lett. 42, 3495–3501 (2015).

    PubMed  PubMed Central  Google Scholar 

  138. 138.

    Venter, O. et al. Global terrestrial Human Footprint maps for 1993 and 2009. Sci. Data 3, 160067 (2016).

    PubMed  PubMed Central  Google Scholar 

  139. 139.

    Ibisch, P. L. et al. A global map of roadless areas and their conservation status. Science 354, 1423–1427 (2016).

    CAS  Google Scholar 

  140. 140.

    Tyukavina, A., Hansen, M. C., Potapov, P. V., Krylov, A. M. & Goetz, S. J. Pan-tropical hinterland forests: mapping minimally disturbed forests. Glob. Ecol. Biogeogr. 25, 151–163 (2016).

    Google Scholar 

  141. 141.

    Steffen, W. et al. The Anthropocene: from global change to planetary stewardship. AMBIO 40, 739–761 (2011).

    PubMed  PubMed Central  Google Scholar 

  142. 142.

    Laurance, W. F. et al. A global strategy for road building. Nature 513, 229–232 (2014).

    CAS  Google Scholar 

  143. 143.

    Watson, J. E. M. et al. Catastrophic declines in wilderness areas undermine global environment targets. Curr. Biol. 26, 2929–2934 (2016).

    CAS  Google Scholar 

  144. 144.

    Chazdon, R. L. et al. When is a forest a forest? Forest concepts and definitions in the era of forest and landscape restoration. AMBIO 45, 538–550 (2016).

    PubMed  PubMed Central  Google Scholar 

  145. 145.

    Penman, J. et al. (eds) IPCC Good Practice Guidance for Land Use, Land-Use Change and Forestry (Institute for Global Environmental Strategies, Kanagawa, 2003).

  146. 146.

    Venter, O. & Koh, L. P. Reducing emissions from deforestation and forest degradation (REDD+): game changer or just another quick fix? Ann. NY Acad. Sci. 1249, 137–150 (2012).

  147. 147.

    A Global Standard for the Identification of Key Biodiversity Areas: Version 1.0 (IUCN, Gland, 2016).

  148. 148.

    Watson, J. E. M., Dudley, N., Segan, D. B. & Hockings, M. The performance and potential of protected areas. Nature 515, 67–73 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. 149.

    DeVelice, R. L. & Martin, J. R. Assessing the extent to which roadless areas complement the conservation of biological diversity. Ecol. Appl. 11, 1008–1018 (2001).

    Google Scholar 

  150. 150.

    Gibbs, H. K. et al. Brazil’s Soy Moratorium. Science 347, 377–378 (2015).

  151. 151.

    Azhar, B., Saadun, N., Prideaux, M. & Lindenmayer, D. B. The global palm oil sector must change to save biodiversity and improve food security in the tropics. J. Environ. Manag. 203, 457–466 (2017).

  152. 152.

    Schleicher, J., Peres, C. A., Amano, T., Llactayo, W. & Leader-Williams, N. Conservation performance of different conservation governance regimes in the Peruvian Amazon. Sci. Rep. 7, 11318 (2017).

    PubMed  PubMed Central  Google Scholar 

  153. 153.

    Nolte, C., Agrawal, A., Silvius, K. M. & Soares-Filho, B. S. Governance regime and location influence avoided deforestation success of protected areas in the Brazilian Amazon. Proc. Natl Acad. Sci. USA 110, 4956–4961 (2013).

  154. 154.

    Santika, T. et al. Community forest management in Indonesia: avoided deforestation in the context of anthropogenic and climate complexities. Glob. Environ. Change 46, 60–71 (2017).

    Google Scholar 

  155. 155.

    Hardner, J., Gullison, R. E. & O’Neill, E. Staying the course: how a long-term strategic donor initiative to conserve the Amazon has yielded outcomes of global significance. Found. Rev. 9, 14 (2017).

    Google Scholar 

  156. 156.

    Final Recommended Peel Watershed Regional Land Use Plan (Peel Watershed Planning Commission, Whitehorse, 2011).

  157. 157.

    Soares-Filho, B. et al. Role of Brazilian Amazon protected areas in climate change mitigation. Proc. Natl Acad. Sci. USA 107, 10821–10826 (2010).

  158. 158.

    Amazon Region Protected Areas Programme (World Wildlife Fund, 2016).

  159. 159.

    Paquette, A. & Messier, C. The role of plantations in managing the world’s forests in the Anthropocene. Front. Ecol. Environ. 8, 27–34 (2010).

    Google Scholar 

  160. 160.

    Phalan, B., Onial, M., Balmford, A. & Green, R. Reconciling food production and biodiversity conservation: land sharing and land sparing compared. Science 333, 1289–1291 (2011).

    CAS  Google Scholar 

  161. 161.

    Edwards, D. P. et al. Land-sharing versus land-sparing logging: reconciling timber extraction with biodiversity conservation. Glob. Change Biol. 20, 183–191 (2014).

    Google Scholar 

  162. 162.

    Phelps, J., Carrasco, L. R., Webb, E. L., Koh, L. P. & Pascual, U. Agricultural intensification escalates future conservation costs. Proc. Natl Acad. Sci. USA 110, 7601–7606 (2013).

  163. 163.

    D’Antonio, C. & Meyerson, L. A. Exotic plant species as problems and solutions in ecological restoration: a synthesis. Restor. Ecol. 10, 703–713 (2002).

    Google Scholar 

  164. 164.

    Brown, R. T., Agee, J. K. & Franklin, J. F. Forest restoration and fire: principles in the context of place. Conserv. Biol. 18, 903–912 (2004).

    Google Scholar 

  165. 165.

    Jantz, P., Goetz, S. & Laporte, N. Carbon stock corridors to mitigate climate change and promote biodiversity in the tropics. Nat. Clim. Change 4, 138–142 (2014).

    CAS  Google Scholar 

  166. 166.

    Galetti, M., Pires, A. S., Brancalion, P. H. S. & Fernandez, F. A. S. Reversing defaunation by trophic rewilding in empty forests. Biotropica 49, 5–8 (2017).

    Google Scholar 

  167. 167.

    Pielke, R. A. et al. Interactions between the atmosphere and terrestrial ecosystems: influence on weather and climate. Glob. Change Biol. 4, 461–475 (1998).

    Google Scholar 

  168. 168.

    Spracklen, D. V., Arnold, S. R. & Taylor, C. M. Observations of increased tropical rainfall preceded by air passage over forests. Nature 489, 282–285 (2012).

    CAS  Google Scholar 

  169. 169.

    Alkama, R. & Cescatti, A. Biophysical climate impacts of recent changes in global forest cover. Science 351, 600–604 (2016).

    CAS  Google Scholar 

  170. 170.

    Bathurst, J. C. et al. Forest impact on floods due to extreme rainfall and snowmelt in four Latin American environments. 1: Field data analysis. J. Hydrol. 400, 281–291 (2011).

    Google Scholar 

  171. 171.

    Barlow, J. et al. Quantifying the biodiversity value of tropical primary, secondary, and plantation forests. Proc. Natl Acad. Sci. USA 104, 18555–18560 (2007).

  172. 172.

    Bergeron, Y., Gauthier, S., Kafka, V., Lefort, P. & Lesieur, D. Natural fire frequency for the eastern Canadian boreal forest: consequences for sustainable forestry. Can. J. For. Res. 31, 384–391 (2001).

  173. 173.

    Feeley, K. J. & Terborgh, J. W. The effects of herbivore density on soil nutrients and tree growth in tropical forest fragments. Ecology 86, 116–124 (2005).

    Google Scholar 

  174. 174.

    Rosin, C. & Poulsen, J. R. Hunting-induced defaunation drives increased seed predation and decreased seedling establishment of commercially important tree species in an Afrotropical forest. For. Ecol. Manag. 382, 206–213 (2016).

  175. 175.

    Gottdenker, N. L., Streicker, D. G., Faust, C. L. & Carroll, C. R. Anthropogenic land use change and infectious diseases: a review of the evidence. Ecohealth 11, 619–632 (2014).

    PubMed  PubMed Central  Google Scholar 

  176. 176.

    Kurz, W. A., Beukema, S. J. & Apps, M. J. Carbon budget implications of the transition from natural to managed disturbance regimes in forest landscapes. Mitig. Adapt. Strateg. Glob. Change 2, 405–421 (1998).

    Google Scholar 

  177. 177.

    Lasco, R. D. et al. Carbon stocks assessment of a selectively logged dipterocarp forest and wood processing mill in the Philippines. J. Trop. For. Sci. 18, 212–221 (2006).

    Google Scholar 

  178. 178.

    Pearson, T. R. H., Brown, S. & Casarim, F. M. Carbon emissions from tropical forest degradation caused by logging. Environ. Res. Lett. 9, 34017 (2014).

    Google Scholar 

  179. 179.

    Brown, S., Casarim, F. M., Grimland, S. K. & Pearson, T. Carbon Impacts from Selective Logging of Forests in Berau, East Kalimantan, Indonesia Final Report to the Nature Conservancy (Winrock International, Arlington, 2011).

  180. 180.

    Bryan, J., Shearman, P., Ash, J. & Kirkpatrick, J. B. Impact of logging on aboveground biomass stocks in lowland rain forest, Papua New Guinea. Ecol. Appl. 20, 2096–2103 (2010).

    Google Scholar 

  181. 181.

    Fox, J. C. et al. Assessment of aboveground carbon in primary and selectively harvested tropical forest in Papua New Guinea. Biotropica 42, 410–419 (2010).

    Google Scholar 

  182. 182.

    Putz, F. E. et al. Sustaining conservation values in selectively logged tropical forests: the attained and the attainable. Conserv. Lett. 5, 296–303 (2012).

    Google Scholar 

  183. 183.

    Dean, C. & Wardell-Johnson, G. Old-growth forests, carbon and climate change: functions and management for tall open-forests in two hotspots of temperate Australia. Plant Biosyst. 144, 180–193 (2010).

    Google Scholar 

  184. 184.

    Dean, C., Wardell-Johnson, G. W. & Kirkpatrick, J. B. Are there any circumstances in which logging primary wet-eucalypt forest will not add to the global carbon burden? Agric. For. Meteorol. 161, 156–169 (2012).

    Google Scholar 

  185. 185.

    Brown, S. et al. Impact of Selective Logging on the Carbon Stocks of Tropical Forests: Republic of Congo as a Case Study (Winrock International, Arlington, 2005).

  186. 186.

    Medjibe, V. D. P. Carbon Dynamics in Central African Forests Managed for Timber. PhD thesis, Univ. Florida (2012).

  187. 187.

    Vidal, E., West, T. A. & Putz, F. E. Recovery of biomass and merchantable timber volumes twenty years after conventional and reduced-impact logging in Amazonian Brazil. For. Ecol. Manag. 376, 1–8 (2016).

  188. 188.

    Asner, G. P. et al. Selective logging in the Brazilian Amazon. Science 310, 480–482 (2005).

    CAS  Google Scholar 

  189. 189.

    Berenguer, E. et al. A large-scale field assessment of carbon stocks in human-modified tropical forests. Glob. Change Biol. 20, 3713–3726 (2014).

    Google Scholar 

  190. 190.

    Blanc, L. et al. Dynamics of aboveground carbon stocks in a selectively logged tropical forest. Ecol. Appl. 19, 1397–1404 (2009).

    Google Scholar 

  191. 191.

    Janisch, J. E. & Harmon, M. E. Successional changes in live and dead wood carbon stores: implications for net ecosystem productivity. Tree Physiol. 22, 77–89 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  192. 192.

    Dirzo, R. et al. Defaunation in the Anthropocene. Science 345, 401–406 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  193. 193.

    Milner-Gulland, E. J. & Bennett, E. L. Wild meat: the bigger picture. Trends Ecol. Evol. 18, 351–357 (2003).

    Google Scholar 

  194. 194.

    Peres, C. A. & Lake, I. R. Extent of nontimber resource extraction in tropical forests: accessibility to game vertebrates by hunters in the Amazon Basin. Conserv. Biol. 17, 521–535 (2003).

    Google Scholar 

  195. 195.

    Camargo-Sanabria, A. A., Mendoza, E., Guevara, R., Martínez-Ramos, M. & Dirzo, R. Experimental defaunation of terrestrial mammalian herbivores alters tropical rainforest understorey diversity. Proc. R. Soc. B 282, 20142580 (2015).

    PubMed  PubMed Central  Google Scholar 

  196. 196.

    Galetti, M. et al. Functional extinction of birds drives rapid evolutionary changes in seed size. Science 340, 1086–1090 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  197. 197.

    Nuñez-Iturri, G. & Howe, H. F. Bushmeat and the fate of trees with seeds dispersed by large primates in a lowland rain forest in western Amazonia. Biotropica 39, 348–354 (2007).

    Google Scholar 

  198. 198.

    Abernethy, K. A., Coad, L., Taylor, G., Lee, M. E. & Maisels, F. Extent and ecological consequences of hunting in Central African rainforests in the twenty-first century. Phil. Trans. R. Soc. B 368, 20120303 (2013).

  199. 199.

    Blake, S., Deem, S. L., Mossimbo, E., Maisels, F. & Walsh, P. Forest elephants: tree planters of the Congo. Biotropica 41, 459–468 (2009).

    Google Scholar 

  200. 200.

    Harrison, R. D. et al. Consequences of defaunation for a tropical tree community. Ecol. Lett. 16, 687–694 (2013).

    Google Scholar 

  201. 201.

    Brodie, J. F. & Gibbs, H. K. Bushmeat hunting as climate threat. Science 326, 364–365 (2009).

    CAS  Google Scholar 

  202. 202.

    Wright, I. J. et al. Relationships among ecologically important dimensions of plant trait variation in seven neotropical forests. Ann. Bot. 99, 1003–1015 (2006).

    PubMed  PubMed Central  Google Scholar 

  203. 203.

    Osuri, A. M. et al. Contrasting effects of defaunation on aboveground carbon storage across the global tropics. Nat. Commun. 7, 11351 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  204. 204.

    Jansen, P. A., Muller-Landau, H. C. & Wright, S. J. Bushmeat hunting and climate: an indirect link. Science 327, 30 (2010).

    CAS  Google Scholar 

  205. 205.

    Poulsen, J. R., Clark, C. J. & Palmer, T. M. Ecological erosion of an Afrotropical forest and potential consequences for tree recruitment and forest biomass. Biol. Conserv. 163, 122–130 (2013).

    Google Scholar 

  206. 206.

    van der Heijden, G. M., Powers, J. S. & Schnitzer, S. A. Lianas reduce carbon accumulation and storage in tropical forests. Proc. Natl Acad. Sci. USA 112, 13267–13271 (2015).

Download references


We thank the John D. and Catherine T. MacArthur Foundation for funding this research, and C. Holtz, A. Rosenthal, B. Mackey, D. DellaSalla, C. Kormos, J. Funk, J. Feidler, S. Lewis, B. Mercer, S. Rumsey, P. Dargusch and E. Sanderson for conversations around different ideas that have been presented within this manuscript. A special thank you to B. Simmons for creating the figure in Box 2.

Author information




J.E.M.W. and T.E. conceived the study. The remaining authors provided ideas and critical feedback.

Corresponding author

Correspondence to James E. M. Watson.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Table

Description of each study represented in Figure 2 with associated references

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Watson, J.E.M., Evans, T., Venter, O. et al. The exceptional value of intact forest ecosystems. Nat Ecol Evol 2, 599–610 (2018).

Download citation

Further reading


Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing