Abstract

As the terrestrial human footprint continues to expand, the amount of native forest that is free from significant damaging human activities is in precipitous decline. There is emerging evidence that the remaining intact forest supports an exceptional confluence of globally significant environmental values relative to degraded forests, including imperilled biodiversity, carbon sequestration and storage, water provision, indigenous culture and the maintenance of human health. Here we argue that maintaining and, where possible, restoring the integrity of dwindling intact forests is an urgent priority for current global efforts to halt the ongoing biodiversity crisis, slow rapid climate change and achieve sustainability goals. Retaining the integrity of intact forest ecosystems should be a central component of proactive global and national environmental strategies, alongside current efforts aimed at halting deforestation and promoting reforestation.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Mackey, B. et al. Policy options for the world’s primary forests in multilateral environmental agreements. Conserv. Lett. 8, 139–147 (2015).

  2. 2.

    MacDicken, K. et al. Global Forest Resources Assessment 2015: How are the World’s Forests Changing? 2nd edn (FAO, Rome, 2016).

  3. 3.

    Potapov, P. et al. The last frontiers of wilderness: tracking loss of intact forest landscapes from 2000 to 2013. Sci. Adv. 3, e1600821 (2017).

  4. 4.

    Venter, O. et al. Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation. Nat. Commun. 7, 12558 (2016).

  5. 5.

    Redford, K. H. The empty forest. Bioscience 42, 412–422 (1992).

  6. 6.

    Adoption of the Paris Agreement: Proposal by the President Draft Decision -/CP.21 (UNFCCC, Geneva, 2015).

  7. 7.

    Progress Towards the Sustainable Development Goals: Report of the Secretary-General (UN Economic and Social Council, 2016).

  8. 8.

    Progress on the New York Declaration on Forests Achieving Collective Forest Goals: Updates on Goals 1-10 (Climate Focus, 2016).

  9. 9.

    Thompson, I. D. et al. An operational framework for defining and monitoring forest degradation. Ecol. Soc. 18, 20 (2013).

  10. 10.

    Ghazoul, J. & Chazdon, R. Degradation and recovery in changing forest landscapes: a multiscale conceptual framework. Annu. Rev. Environ. Resour. 42, 161–188 (2017).

  11. 11.

    Zarin, D. J. et al. Can carbon emissions from tropical deforestation drop by 50% in 5 years?. Glob. Change Biol. 22, 1336–1347 (2016).

  12. 12.

    Houghton, R. A., Byers, B. & Nassikas, A. A. A role for tropical forests in stabilizing atmospheric CO2. Nat. Clim. Change 5, 1022–1023 (2015).

  13. 13.

    Balmford, A., Gaston, K. J., Blyth, S., James, A. & Kapos, V. Global variation in terrestrial conservation costs, conservation benefits, and unmet conservation needs. Proc. Natl Acad. Sci. USA 100, 1046–1050 (2003).

  14. 14.

    Gibson, L. et al. Primary forests are irreplaceable for sustaining tropical biodiversity. Nature 478, 378–381 (2011).

  15. 15.

    Lewis, S. L., Edwards, D. P. & Galbraith, D. Increasing human dominance of tropical forests. Science 349, 827–832 (2015).

  16. 16.

    De Leo, G. & Levin, S. The multifaceted aspects of ecosystem integrity. Conserv. Ecol. 1, 3 (1997).

  17. 17.

    Edwards, D. P., Tobias, J. A., Sheil, D., Meijaard, E. & Laurance, W. F. Maintaining ecosystem function and services in logged tropical forests. Trends Ecol. Evol. 29, 511–520 (2014).

  18. 18.

    Lindenmayer, D., Thorn, S. & Banks, S. Please do not disturb ecosystems further. Nat. Ecol. Evol. 1, 0031 (2017).

  19. 19.

    Scheffers, B. R. et al. The broad footprint of climate change from genes to biomes to people. Science 354, aaf7671 (2016).

  20. 20.

    Le Quéré, C. et al. Global carbon budget 2016. Earth Syst. Sci. Data 8, 605–649 (2016).

  21. 21.

    Sanderson, B. M., O’Neill, B. C. & Tebaldi, C. What would it take to achieve the Paris temperature targets? Geophys. Res. Lett. 43, 7133–7142 (2016).

  22. 22.

    Houghton, R. A. Carbon emissions and the drivers of deforestation and forest degradation in the tropics. Curr. Opin. Environ. Sustain. 4, 597–603 (2012).

  23. 23.

    Keith, H. et al. Managing temperate forests for carbon storage: impacts of logging versus forest protection on carbon stocks. Ecosphere 5, 1–34 (2014).

  24. 24.

    Page, S. E., Rieley, J. O. & Banks, C. J. Global and regional importance of the tropical peatland carbon pool. Glob. Change Biol. 17, 798–818 (2011).

  25. 25.

    Turetsky, M. R. et al. Global vulnerability of peatlands to fire and carbon loss. Nat. Geosci. 8, 11–14 (2015).

  26. 26.

    Zimmerman, B. L. & Kormos, C. F. Prospects for sustainable logging in tropical forests. Bioscience 62, 479–487 (2012).

  27. 27.

    Haddad, N. M. et al. Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci. Adv. 1, e1500052 (2015).

  28. 28.

    Chaplin-Kramer, R. et al. Degradation in carbon stocks near tropical forest edges. Nat. Commun. 6, 10158 (2015).

  29. 29.

    Bello, C. et al. Defaunation affects carbon storage in tropical forests. Sci. Adv. 1, e1501105 (2015).

  30. 30.

    Sobral, M. et al. Mammal diversity influences the carbon cycle through trophic interactions in the Amazon. Nat. Ecol. Evol. 1, 1670–1676 (2017).

  31. 31.

    Peres, C. A., Emilio, T., Schietti, J., Desmoulière, S. J. M. & Levi, T. Dispersal limitation induces long-term biomass collapse in overhunted Amazonian forests. Proc. Natl Acad. Sci. USA 113, 892–897 (2016).

  32. 32.

    Robinson, J. G. & Bennett, E. L (eds) Hunting for Sustainability in Tropical Forests (Columbia Univ. Press, New York, 2000).

  33. 33.

    Maisels, F. et al. Devastating decline of forest elephants in Central Africa. PLoS ONE 8, e59469 (2013).

  34. 34.

    Lewis, S. L. et al. Increasing carbon storage in intact African tropical forests. Nature 457, 1003–1006 (2009).

  35. 35.

    Luyssaert, S. et al. Old-growth forests as global carbon sinks. Nature 455, 213–215 (2008).

  36. 36.

    Houghton, R. A. The emissions of carbon from deforestation and degradation in the tropics: past trends and future potential. Carbon Manag. 4, 539–546 (2013).

  37. 37.

    Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).

  38. 38.

    Griscom, B. W. et al. Natural climate solutions. Proc. Natl Acad. Sci. USA 114, 11645–11650 (2017).

  39. 39.

    Bongers, F., Chazdon, R., Poorter, L. & Peña-Claros, M. The potential of secondary forests. Science 348, 642–643 (2015).

  40. 40.

    Pielke, R. A., Mahmood, R. & McAlpine, C. Land’s complex role in climate change. Phys. Today 69, 40–46 (2016).

  41. 41.

    Sheil, D. & Murdiyarso, D. How forests attract rain: an examination of a new hypothesis. Bioscience 59, 341–347 (2009).

  42. 42.

    Bonan, G. B. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320, 1444–1449 (2008).

  43. 43.

    Deo, R. C. et al. Impact of historical land cover change on daily indices of climate extremes including droughts in eastern Australia. Geophys. Res. Lett. 36, L08705 (2009).

  44. 44.

    Medvigy, D., Walko, R. L., Otte, M. J. & Avissar, R. Simulated changes in northwest US climate in response to Amazon deforestation. J. Clim. 26, 9115–9136 (2013).

  45. 45.

    Ahlström, A. et al. The dominant role of semi-arid ecosystems in the trend and variability of the land CO2 sink. Science 348, 895–899 (2015).

  46. 46.

    D’Odorico, P. et al. Ecohydrology of terrestrial ecosystems. Bioscience 60, 898–907 (2010).

  47. 47.

    Ludwig, D., Brock, W. & Carpenter, S. Uncertainty in discount models and environmental accounting. Ecol. Soc. 10, 13 (2005).

  48. 48.

    Vertessy, R. A., Watson, F. G. R. & Sharon, K. O. Factors determining relations between stand age and catchment water balance in mountain ash forests. For. Ecol. Manag. 143, 13–26 (2001).

  49. 49.

    Alila, Y., Kuras, P. K., Schnorbus, M. & Hudson, R. Forests and floods: a new paradigm sheds light on age-old controversies. Water Resour. Res. 45, W08416 (2009).

  50. 50.

    Brookhuis, B. J. & Hein, L. G. The value of the flood control service of tropical forests: a case study for Trinidad. For. Policy Econ. 62, 118–124 (2016).

  51. 51.

    Maxwell, S. L., Fuller, R. A., Brooks, T. M. & Watson, J. E. M. Biodiversity: the ravages of guns, nets and bulldozers. Nature 536, 143–145 (2016).

  52. 52.

    Pimm, S. L. et al. The biodiversity of species and their rates of extinction, distribution, and protection. Science 344, 1246752 (2014).

  53. 53.

    Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).

  54. 54.

    Morales-Hidalgo, D., Oswalt, S. N. & Somanathan, E. Status and trends in global primary forest, protected areas, and areas designated for conservation of biodiversity from the Global Forest Resources Assessment 2015. For. Ecol. Manag. 352, 68–77 (2015).

  55. 55.

    Venier, L. A. et al. Effects of natural resource development on the terrestrial biodiversity of Canadian boreal forests. Environ. Rev. 22, 457–490 (2014).

  56. 56.

    Laurance, W. F. et al. The fate of Amazonian forest fragments: a 32-year investigation. Biol. Conserv. 144, 56–67 (2011).

  57. 57.

    Peres, C. A. Why we need megareserves in Amazonia. Conserv. Biol. 19, 728–733 (2005).

  58. 58.

    Lortkipanidze, B. Brown bear distribution and status in the South Caucasus. Ursus 21, 97–103 (2010).

  59. 59.

    Festa-Bianchet, M., Ray, J. C., Boutin, S., Côté, S. D. & Gunn, A. Conservation of caribou (Rangifer tarandus) in Canada: an uncertain future. Can. J. Zool. 89, 419–434 (2011).

  60. 60.

    Broadbent, E. N. et al. Forest fragmentation and edge effects from deforestation and selective logging in the Brazilian Amazon. Biol. Conserv. 141, 1745–1757 (2008).

  61. 61.

    Hermy, M. & Verheyen, K. Legacies of the past in the present-day forest biodiversity: a review of past land-use effects on forest plant species composition and diversity. Ecol. Res. 22, 361–371 (2007).

  62. 62.

    Lindenmayer, D. B. et al. How to make a common species rare: a case against conservation complacency. Biol. Conserv. 144, 1663–1672 (2011).

  63. 63.

    Ripple, W. J. et al. Collapse of the world’s largest herbivores. Sci. Adv. 1, e1400103 (2015).

  64. 64.

    Gray, T. N. E., Prum, S., Pin, C. & Phan, C. Distance sampling reveals Cambodia’s Eastern Plains Landscape supports the largest global population of the endangered banteng Bos javanicus. Oryx 46, 563–566 (2012).

  65. 65.

    Barlow, J. et al. Anthropogenic disturbance in tropical forests can double biodiversity loss from deforestation. Nature 535, 144–147 (2016).

  66. 66.

    Edwards, D. P. The rainforest’s ‘do not disturb’ signs. Nature 535, 44–46 (2016).

  67. 67.

    Peres, C. A. Synergistic effects of subsistence hunting and habitat fragmentation on Amazonian forest vertebrates. Conserv. Biol. 15, 1490–1505 (2001).

  68. 68.

    Betts, M. G. et al. Global forest loss disproportionately erodes biodiversity in intact landscapes. Nature 547, 441–444 (2017).

  69. 69.

    Miraldo, A. et al. An Anthropocene map of genetic diversity. Science 353, 1532–1535 (2016).

  70. 70.

    Byron, N. & Arnold, M. What futures for the people of the tropical forests? World Dev. 27, 789–805 (1999).

  71. 71.

    Lévi-Strauss, C. The Savage Mind (Univ. Chicago Press, Chicago, 1966).

  72. 72.

    Johnson, C. N., Bradshaw, C. J. A., Cooper, A., Gillespie, R. & Brook, B. W. Rapid megafaunal extinction following human arrival throughout the New World. Quat. Int. 308, 273–277 (2013).

  73. 73.

    Hutterer, K. L. in People of the Tropical Rain Forest (eds Denslow, J. S. & Padoch, C.) 63–72 (Univ. California Press, Washington DC, 1988).

  74. 74.

    Mercader, J. Forest people: the role of African rainforests in human evolution and dispersal. Evol. Anthropol. 11, 117–124 (2002).

  75. 75.

    Robinson, J. G. & Bennett, E. L. (eds) in Hunting for Sustainability in Tropical Forests 13–30 (Columbia Univ. Press, New York, 2000).

  76. 76.

    Bennett, E. L. & Robinson, J. G. Hunting of Wildlife in Tropical Forests: Implications for Biodiversity and Forest Peoples Biodiversity Studies Impact Series Paper No. 76 (World Bank, Washington DC, 2000).

  77. 77.

    Levis, C. et al. Persistent effects of pre-Columbian plant domestication on Amazonian forest composition. Science 355, 925–931 (2017).

  78. 78.

    Schmidt, M. J. & Heckenberger, M. J. in Amazonian Dark Earths: Wim Sombroek's Vision (eds Woods, W. I. et al.) 163–191 (Springer, Dordrecht, 2009).

  79. 79.

    Foley, J. A. et al. Amazonia revealed: forest degradation and loss of ecosystem goods and services in the Amazon Basin. Front. Ecol. Environ. 5, 25–32 (2007).

  80. 80.

    Rozzi, R. Biocultural ethics: recovering the vital links between the inhabitants, their habits, and habitats. Environ. Ethics 34, 27–50 (2012).

  81. 81.

    Southgate, D., Wasserstrom, R. & Reider, S. Oil development, deforestation, and indigenous populations in the Ecuadorian Amazon. Lat. Am. Stud. Assoc. 11, 1–38 (2009).

  82. 82.

    Bedoya Garland, E. in The Social Causes of Environmental Destruction in Latin America (eds Painter, M. & Durham, W. H.) 217–248 (Univ. Michigan Press, Ann Arbor, 1995).

  83. 83.

    Demmer, M. J. & Overman, J. P. M. Indigenous People Conserving the Rain Forest? The Effect of Wealth and Markets on the Economic Behaviour of Tawahka Amerindians in Honduras (Tropenbos Foundation, 2001).

  84. 84.

    Godoy, R. et al. Household determinants of deforestation by Amerindians in Honduras. World Dev. 25, 977–987 (1997).

  85. 85.

    Reyes-García, V. et al. Indigenous land reconfiguration and fragmented institutions: a historical political ecology of Tsimane’lands (Bolivian Amazon). J. Rural Stud. 34, 282–291 (2014).

  86. 86.

    Sirén, A. Changing Interactions Between Humans and Nature in Sarayaku, Ecuadorian Amazon. PhD thesis, Swedish Univ. Agricultural Sciences (2004).

  87. 87.

    Sirén, A. H. Population growth and land use intensification in a subsistence-based indigenous community in the Amazon. Hum. Ecol. 35, 669–680 (2007).

  88. 88.

    Luz, A. C. et al. How does cultural change affect indigenous peoples’ hunting activity? An empirical study among the Tsimane’in the Bolivian Amazon. Conserv. Soc. 13, 382–394 (2015).

  89. 89.

    Gross, D. R. et al. Ecology and acculturation among native peoples of central Brazil. Science 206, 1043–1050 (1979).

  90. 90.

    Sheil, D. et al. The Impacts and Opportunities of Oil Palm in Southeast Asia: What do We Know and What do We Need to Know? (Center for International Forestry Research, Bogor, 2009).

  91. 91.

    Finer, M., Jenkins, C. N., Pimm, S. L., Keane, B. & Ross, C. Oil and gas projects in the western Amazon: threats to wilderness, biodiversity, and indigenous peoples. PLoS ONE 3, e2932 (2008).

  92. 92.

    Olivero, J. et al. Distribution and numbers of pygmies in Central African forests. PLoS ONE 11, e0144499 (2016).

  93. 93.

    Parlee, B. L. Avoiding the resource curse: indigenous communities and Canada’s oil sands. World Dev. 74, 425–436 (2015).

  94. 94.

    Barraclough, S. & Ghimire, K. Forests and Livelihoods: The Social Dynamics of Deforestation in Developing Countries (Springer, London, 1995).

  95. 95.

    Oliveira, P. J. C. et al. Land-use allocation protects the Peruvian Amazon. Science 317, 1233–1236 (2007).

  96. 96.

    Colfer, C. J. P. Human Health and Forests: A Global Overview of Issues, Practice and Policy (Routledge, London, 2012).

  97. 97.

    Karjalainen, E., Sarjala, T. & Raitio, H. Promoting human health through forests: overview and major challenges. Environ. Health Prev. Med. 15, 1–8 (2010).

  98. 98.

    Shanley, P. & Luz, L. The impacts of forest degradation on medicinal plant use and implications for health care in eastern Amazonia. Bioscience 53, 573–584 (2003).

  99. 99.

    Koplitz, S. N. et al. Public health impacts of the severe haze in equatorial Asia in September–October 2015: demonstration of a new framework for informing fire management strategies to reduce downwind smoke exposure. Environ. Res. Lett. 11, 94023 (2016).

  100. 100.

    Laurance, W. F. Forest–climate interactions in fragmented tropical landscapes. Phil. Trans. R. Soc. Lond. B 359, 345–352 (2004).

  101. 101.

    Murray, C. J. L. et al. Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380, 2197–2223 (2012).

  102. 102.

    Jones, K. E. et al. Global trends in emerging infectious diseases. Nature 451, 990–993 (2008).

  103. 103.

    Myers, S. S. & Patz, J. A. Emerging threats to human health from global environmental change. Annu. Rev. Environ. Resour. 34, 223–252 (2009).

  104. 104.

    Fornace, K. M. et al. Association between landscape factors and spatial patterns of Plasmodium knowlesi infections in Sabah, Malaysia. Emerg. Infect. Dis. 22, 201–208 (2016).

  105. 105.

    Dunn, R. R. Global mapping of ecosystem disservices: the unspoken reality that nature sometimes kills us. Biotropica 42, 555–557 (2010).

  106. 106.

    Murray, K. A. & Daszak, P. Human ecology in pathogenic landscapes: two hypotheses on how land use change drives viral emergence. Curr. Opin. Virol. 3, 79–83 (2013).

  107. 107.

    Vasilakis, N., Cardosa, J., Hanley, K. A., Holmes, E. C. & Weaver, S. C. Fever from the forest: prospects for the continued emergence of sylvatic dengue virus and its impact on public health. Nat. Rev. Microbiol. 9, 532–541 (2011).

  108. 108.

    Ali, S. et al. Environmental and social change drive the explosive emergence of Zika virus in the Americas. PLoS Negl. Trop. Dis. 11, e0005135 (2017).

  109. 109.

    Jonsson, C. B., Figueiredo, L. T. M. & Vapalahti, O. A global perspective on hantavirus ecology, epidemiology, and disease. Clin. Microbiol. Rev. 23, 412–441 (2010).

  110. 110.

    Norris, D. E. Mosquito-borne diseases as a consequence of land use change. Ecohealth 1, 19–24 (2004).

  111. 111.

    Hahn, M. B., Gangnon, R. E., Barcellos, C., Asner, G. P. & Patz, J. A. Influence of deforestation, logging, and fire on malaria in the Brazilian Amazon. PLoS ONE 9, e85725 (2014).

  112. 112.

    Chazdon, R. L. Beyond deforestation: restoring forests and ecosystem services on degraded lands. Science 320, 1458–1460 (2008).

  113. 113.

    Putz, F. E. & Redford, K. H. The importance of defining ‘forest’: tropical forest degradation, deforestation, long-term phase shifts, and further transitions. Biotropica 42, 10–20 (2010).

  114. 114.

    Laurance, W. F., Goosem, M. & Laurance, S. G. W. Impacts of roads and linear clearings on tropical forests. Trends Ecol. Evol. 24, 659–669 (2009).

  115. 115.

    Asner, G. P. et al. Condition and fate of logged forests in the Brazilian Amazon. Proc. Natl Acad. Sci. USA 103, 12947–12950 (2006).

  116. 116.

    Giam, X., Clements, G. R., Aziz, S. A., Chong, K. Y. & Miettinen, J. Rethinking the ‘back to wilderness’ concept for Sundaland’s forests. Biol. Conserv. 144, 3149–3152 (2011).

  117. 117.

    Berry, N. J. et al. The high value of logged tropical forests: lessons from northern Borneo. Biodivers. Conserv. 19, 985–997 (2010).

  118. 118.

    Barlow, J. & Peres, C. A. Fire-mediated dieback and compositional cascade in an Amazonian forest. Phil. Trans. R. Soc. B 363, 1787–1794 (2008).

  119. 119.

    Thompson, J. R., Spies, T. A. & Ganio, L. M. Reburn severity in managed and unmanaged vegetation in a large wildfire. Proc. Natl Acad. Sci. USA 104, 10743–10748 (2007).

  120. 120.

    Taylor, C., McCarthy, M. A. & Lindenmayer, D. B. Nonlinear effects of stand age on fire severity. Conserv. Lett. 7, 355–370 (2014).

  121. 121.

    Stephens, S. L. et al. Managing forests and fire in changing climates. Science 342, 41–42 (2013).

  122. 122.

    Wang, X. et al. Increasing frequency of extreme fire weather in Canada with climate change. Clim. Change 130, 573–586 (2015).

  123. 123.

    Bowman, D. Ecohydrology: when will the jungle burn? Nat. Clim. Change 7, 390–391 (2017).

  124. 124.

    Lindenmayer, D. B., Hobbs, R. J., Likens, G. E., Krebs, C. J. & Banks, S. C. Newly discovered landscape traps produce regime shifts in wet forests. Proc. Natl Acad. Sci. USA 108, 15887–15891 (2011).

  125. 125.

    Côté, I. M., Darling, E. S. & Brown, C. J. Interactions among ecosystem stressors and their importance in conservation. Proc. R. Soc. B 283, 20152592 (2016).

  126. 126.

    Thompson, I., Mackey, B., McNulty, S. & Mosseler, A. Forest Resilience, Biodiversity, and Climate Change Technical Series No. 43 (Secretariat of the Convention on Biological Diversity, Montreal, 2009).

  127. 127.

    Mackey, B. G., Watson, J. E. M., Hope, G. & Gilmore, S. Climate change, biodiversity conservation, and the role of protected areas: an Australian perspective. Biodiversity 9, 11–18 (2008).

  128. 128.

    Alberto, F. J. et al. Potential for evolutionary responses to climate change – evidence from tree populations. Glob. Change Biol. 19, 1645–1661 (2013).

  129. 129.

    Watson, J. E. M., Iwamura, T. & Butt, N. Mapping vulnerability and conservation adaptation strategies under climate change. Nat. Clim. Change 3, 989–994 (2013).

  130. 130.

    Shoo, L. P., Storlie, C., VanDerWal, J., Little, J. & Williams, S. E. Targeted protection and restoration to conserve tropical biodiversity in a warming world. Glob. Change Biol. 17, 186–193 (2011).

  131. 131.

    Sgro, C. M., Lowe, A. J. & Hoffmann, A. A. Building evolutionary resilience for conserving biodiversity under climate change. Evol. Appl. 4, 326–337 (2011).

  132. 132.

    Hole, D. G. et al. Projected impacts of climate change on a continent-wide protected area network. Ecol. Lett. 12, 420–431 (2009).

  133. 133.

    Saleska, S. R., Didan, K., Huete, A. R. & Da Rocha, H. R. Amazon forests green-up during 2005 drought. Science 318, 612 (2007).

  134. 134.

    Piao, S. et al. Footprint of temperature changes in the temperate and boreal forest carbon balance. Geophys. Res. Lett. 36, L07404 (2009).

  135. 135.

    Rose, R. A. et al. Ten ways remote sensing can contribute to conservation. Conserv. Biol. 29, 350–359 (2015).

  136. 136.

    Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).

  137. 137.

    Kim, D.-H., Sexton, J. O. & Townshend, J. R. Accelerated deforestation in the humid tropics from the 1990s to the 2000s. Geophys. Res. Lett. 42, 3495–3501 (2015).

  138. 138.

    Venter, O. et al. Global terrestrial Human Footprint maps for 1993 and 2009. Sci. Data 3, 160067 (2016).

  139. 139.

    Ibisch, P. L. et al. A global map of roadless areas and their conservation status. Science 354, 1423–1427 (2016).

  140. 140.

    Tyukavina, A., Hansen, M. C., Potapov, P. V., Krylov, A. M. & Goetz, S. J. Pan-tropical hinterland forests: mapping minimally disturbed forests. Glob. Ecol. Biogeogr. 25, 151–163 (2016).

  141. 141.

    Steffen, W. et al. The Anthropocene: from global change to planetary stewardship. AMBIO 40, 739–761 (2011).

  142. 142.

    Laurance, W. F. et al. A global strategy for road building. Nature 513, 229–232 (2014).

  143. 143.

    Watson, J. E. M. et al. Catastrophic declines in wilderness areas undermine global environment targets. Curr. Biol. 26, 2929–2934 (2016).

  144. 144.

    Chazdon, R. L. et al. When is a forest a forest? Forest concepts and definitions in the era of forest and landscape restoration. AMBIO 45, 538–550 (2016).

  145. 145.

    Penman, J. et al. (eds) IPCC Good Practice Guidance for Land Use, Land-Use Change and Forestry (Institute for Global Environmental Strategies, Kanagawa, 2003).

  146. 146.

    Venter, O. & Koh, L. P. Reducing emissions from deforestation and forest degradation (REDD+): game changer or just another quick fix? Ann. NY Acad. Sci. 1249, 137–150 (2012).

  147. 147.

    A Global Standard for the Identification of Key Biodiversity Areas: Version 1.0 (IUCN, Gland, 2016).

  148. 148.

    Watson, J. E. M., Dudley, N., Segan, D. B. & Hockings, M. The performance and potential of protected areas. Nature 515, 67–73 (2014).

  149. 149.

    DeVelice, R. L. & Martin, J. R. Assessing the extent to which roadless areas complement the conservation of biological diversity. Ecol. Appl. 11, 1008–1018 (2001).

  150. 150.

    Gibbs, H. K. et al. Brazil’s Soy Moratorium. Science 347, 377–378 (2015).

  151. 151.

    Azhar, B., Saadun, N., Prideaux, M. & Lindenmayer, D. B. The global palm oil sector must change to save biodiversity and improve food security in the tropics. J. Environ. Manag. 203, 457–466 (2017).

  152. 152.

    Schleicher, J., Peres, C. A., Amano, T., Llactayo, W. & Leader-Williams, N. Conservation performance of different conservation governance regimes in the Peruvian Amazon. Sci. Rep. 7, 11318 (2017).

  153. 153.

    Nolte, C., Agrawal, A., Silvius, K. M. & Soares-Filho, B. S. Governance regime and location influence avoided deforestation success of protected areas in the Brazilian Amazon. Proc. Natl Acad. Sci. USA 110, 4956–4961 (2013).

  154. 154.

    Santika, T. et al. Community forest management in Indonesia: avoided deforestation in the context of anthropogenic and climate complexities. Glob. Environ. Change 46, 60–71 (2017).

  155. 155.

    Hardner, J., Gullison, R. E. & O’Neill, E. Staying the course: how a long-term strategic donor initiative to conserve the Amazon has yielded outcomes of global significance. Found. Rev. 9, 14 (2017).

  156. 156.

    Final Recommended Peel Watershed Regional Land Use Plan (Peel Watershed Planning Commission, Whitehorse, 2011).

  157. 157.

    Soares-Filho, B. et al. Role of Brazilian Amazon protected areas in climate change mitigation. Proc. Natl Acad. Sci. USA 107, 10821–10826 (2010).

  158. 158.

    Amazon Region Protected Areas Programme (World Wildlife Fund, 2016).

  159. 159.

    Paquette, A. & Messier, C. The role of plantations in managing the world’s forests in the Anthropocene. Front. Ecol. Environ. 8, 27–34 (2010).

  160. 160.

    Phalan, B., Onial, M., Balmford, A. & Green, R. Reconciling food production and biodiversity conservation: land sharing and land sparing compared. Science 333, 1289–1291 (2011).

  161. 161.

    Edwards, D. P. et al. Land-sharing versus land-sparing logging: reconciling timber extraction with biodiversity conservation. Glob. Change Biol. 20, 183–191 (2014).

  162. 162.

    Phelps, J., Carrasco, L. R., Webb, E. L., Koh, L. P. & Pascual, U. Agricultural intensification escalates future conservation costs. Proc. Natl Acad. Sci. USA 110, 7601–7606 (2013).

  163. 163.

    D’Antonio, C. & Meyerson, L. A. Exotic plant species as problems and solutions in ecological restoration: a synthesis. Restor. Ecol. 10, 703–713 (2002).

  164. 164.

    Brown, R. T., Agee, J. K. & Franklin, J. F. Forest restoration and fire: principles in the context of place. Conserv. Biol. 18, 903–912 (2004).

  165. 165.

    Jantz, P., Goetz, S. & Laporte, N. Carbon stock corridors to mitigate climate change and promote biodiversity in the tropics. Nat. Clim. Change 4, 138–142 (2014).

  166. 166.

    Galetti, M., Pires, A. S., Brancalion, P. H. S. & Fernandez, F. A. S. Reversing defaunation by trophic rewilding in empty forests. Biotropica 49, 5–8 (2017).

  167. 167.

    Pielke, R. A. et al. Interactions between the atmosphere and terrestrial ecosystems: influence on weather and climate. Glob. Change Biol. 4, 461–475 (1998).

  168. 168.

    Spracklen, D. V., Arnold, S. R. & Taylor, C. M. Observations of increased tropical rainfall preceded by air passage over forests. Nature 489, 282–285 (2012).

  169. 169.

    Alkama, R. & Cescatti, A. Biophysical climate impacts of recent changes in global forest cover. Science 351, 600–604 (2016).

  170. 170.

    Bathurst, J. C. et al. Forest impact on floods due to extreme rainfall and snowmelt in four Latin American environments. 1: Field data analysis. J. Hydrol. 400, 281–291 (2011).

  171. 171.

    Barlow, J. et al. Quantifying the biodiversity value of tropical primary, secondary, and plantation forests. Proc. Natl Acad. Sci. USA 104, 18555–18560 (2007).

  172. 172.

    Bergeron, Y., Gauthier, S., Kafka, V., Lefort, P. & Lesieur, D. Natural fire frequency for the eastern Canadian boreal forest: consequences for sustainable forestry. Can. J. For. Res. 31, 384–391 (2001).

  173. 173.

    Feeley, K. J. & Terborgh, J. W. The effects of herbivore density on soil nutrients and tree growth in tropical forest fragments. Ecology 86, 116–124 (2005).

  174. 174.

    Rosin, C. & Poulsen, J. R. Hunting-induced defaunation drives increased seed predation and decreased seedling establishment of commercially important tree species in an Afrotropical forest. For. Ecol. Manag. 382, 206–213 (2016).

  175. 175.

    Gottdenker, N. L., Streicker, D. G., Faust, C. L. & Carroll, C. R. Anthropogenic land use change and infectious diseases: a review of the evidence. Ecohealth 11, 619–632 (2014).

  176. 176.

    Kurz, W. A., Beukema, S. J. & Apps, M. J. Carbon budget implications of the transition from natural to managed disturbance regimes in forest landscapes. Mitig. Adapt. Strateg. Glob. Change 2, 405–421 (1998).

  177. 177.

    Lasco, R. D. et al. Carbon stocks assessment of a selectively logged dipterocarp forest and wood processing mill in the Philippines. J. Trop. For. Sci. 18, 212–221 (2006).

  178. 178.

    Pearson, T. R. H., Brown, S. & Casarim, F. M. Carbon emissions from tropical forest degradation caused by logging. Environ. Res. Lett. 9, 34017 (2014).

  179. 179.

    Brown, S., Casarim, F. M., Grimland, S. K. & Pearson, T. Carbon Impacts from Selective Logging of Forests in Berau, East Kalimantan, Indonesia Final Report to the Nature Conservancy (Winrock International, Arlington, 2011).

  180. 180.

    Bryan, J., Shearman, P., Ash, J. & Kirkpatrick, J. B. Impact of logging on aboveground biomass stocks in lowland rain forest, Papua New Guinea. Ecol. Appl. 20, 2096–2103 (2010).

  181. 181.

    Fox, J. C. et al. Assessment of aboveground carbon in primary and selectively harvested tropical forest in Papua New Guinea. Biotropica 42, 410–419 (2010).

  182. 182.

    Putz, F. E. et al. Sustaining conservation values in selectively logged tropical forests: the attained and the attainable. Conserv. Lett. 5, 296–303 (2012).

  183. 183.

    Dean, C. & Wardell-Johnson, G. Old-growth forests, carbon and climate change: functions and management for tall open-forests in two hotspots of temperate Australia. Plant Biosyst. 144, 180–193 (2010).

  184. 184.

    Dean, C., Wardell-Johnson, G. W. & Kirkpatrick, J. B. Are there any circumstances in which logging primary wet-eucalypt forest will not add to the global carbon burden? Agric. For. Meteorol. 161, 156–169 (2012).

  185. 185.

    Brown, S. et al. Impact of Selective Logging on the Carbon Stocks of Tropical Forests: Republic of Congo as a Case Study (Winrock International, Arlington, 2005).

  186. 186.

    Medjibe, V. D. P. Carbon Dynamics in Central African Forests Managed for Timber. PhD thesis, Univ. Florida (2012).

  187. 187.

    Vidal, E., West, T. A. & Putz, F. E. Recovery of biomass and merchantable timber volumes twenty years after conventional and reduced-impact logging in Amazonian Brazil. For. Ecol. Manag. 376, 1–8 (2016).

  188. 188.

    Asner, G. P. et al. Selective logging in the Brazilian Amazon. Science 310, 480–482 (2005).

  189. 189.

    Berenguer, E. et al. A large-scale field assessment of carbon stocks in human-modified tropical forests. Glob. Change Biol. 20, 3713–3726 (2014).

  190. 190.

    Blanc, L. et al. Dynamics of aboveground carbon stocks in a selectively logged tropical forest. Ecol. Appl. 19, 1397–1404 (2009).

  191. 191.

    Janisch, J. E. & Harmon, M. E. Successional changes in live and dead wood carbon stores: implications for net ecosystem productivity. Tree Physiol. 22, 77–89 (2002).

  192. 192.

    Dirzo, R. et al. Defaunation in the Anthropocene. Science 345, 401–406 (2014).

  193. 193.

    Milner-Gulland, E. J. & Bennett, E. L. Wild meat: the bigger picture. Trends Ecol. Evol. 18, 351–357 (2003).

  194. 194.

    Peres, C. A. & Lake, I. R. Extent of nontimber resource extraction in tropical forests: accessibility to game vertebrates by hunters in the Amazon Basin. Conserv. Biol. 17, 521–535 (2003).

  195. 195.

    Camargo-Sanabria, A. A., Mendoza, E., Guevara, R., Martínez-Ramos, M. & Dirzo, R. Experimental defaunation of terrestrial mammalian herbivores alters tropical rainforest understorey diversity. Proc. R. Soc. B 282, 20142580 (2015).

  196. 196.

    Galetti, M. et al. Functional extinction of birds drives rapid evolutionary changes in seed size. Science 340, 1086–1090 (2013).

  197. 197.

    Nuñez-Iturri, G. & Howe, H. F. Bushmeat and the fate of trees with seeds dispersed by large primates in a lowland rain forest in western Amazonia. Biotropica 39, 348–354 (2007).

  198. 198.

    Abernethy, K. A., Coad, L., Taylor, G., Lee, M. E. & Maisels, F. Extent and ecological consequences of hunting in Central African rainforests in the twenty-first century. Phil. Trans. R. Soc. B 368, 20120303 (2013).

  199. 199.

    Blake, S., Deem, S. L., Mossimbo, E., Maisels, F. & Walsh, P. Forest elephants: tree planters of the Congo. Biotropica 41, 459–468 (2009).

  200. 200.

    Harrison, R. D. et al. Consequences of defaunation for a tropical tree community. Ecol. Lett. 16, 687–694 (2013).

  201. 201.

    Brodie, J. F. & Gibbs, H. K. Bushmeat hunting as climate threat. Science 326, 364–365 (2009).

  202. 202.

    Wright, I. J. et al. Relationships among ecologically important dimensions of plant trait variation in seven neotropical forests. Ann. Bot. 99, 1003–1015 (2006).

  203. 203.

    Osuri, A. M. et al. Contrasting effects of defaunation on aboveground carbon storage across the global tropics. Nat. Commun. 7, 11351 (2016).

  204. 204.

    Jansen, P. A., Muller-Landau, H. C. & Wright, S. J. Bushmeat hunting and climate: an indirect link. Science 327, 30 (2010).

  205. 205.

    Poulsen, J. R., Clark, C. J. & Palmer, T. M. Ecological erosion of an Afrotropical forest and potential consequences for tree recruitment and forest biomass. Biol. Conserv. 163, 122–130 (2013).

  206. 206.

    van der Heijden, G. M., Powers, J. S. & Schnitzer, S. A. Lianas reduce carbon accumulation and storage in tropical forests. Proc. Natl Acad. Sci. USA 112, 13267–13271 (2015).

Download references

Acknowledgements

We thank the John D. and Catherine T. MacArthur Foundation for funding this research, and C. Holtz, A. Rosenthal, B. Mackey, D. DellaSalla, C. Kormos, J. Funk, J. Feidler, S. Lewis, B. Mercer, S. Rumsey, P. Dargusch and E. Sanderson for conversations around different ideas that have been presented within this manuscript. A special thank you to B. Simmons for creating the figure in Box 2.

Author information

Author notes

  1. These authors contributed equally: James E. M. Watson, Tom Evans.

Affiliations

  1. School of Earth and Environmental Sciences, The University of Queensland, St. Lucia, Brisbane, Queensland, Australia

    • James E. M. Watson
    • , Brooke Williams
    • , Ayesha Tulloch
    • , Claire Stewart
    • , Alvaro Salazar
    • , Clive McAlpine
    • , Sean Maxwell
    • , Hedley Grantham
    •  & Rebecca K. Runting
  2. Wildlife Conservation Society, Global Conservation Program, Bronx, New York, NY, USA

    • James E. M. Watson
    • , Tom Evans
    • , Brooke Williams
    • , Ayesha Tulloch
    • , Joe Walston
    • , John G. Robinson
    • , Michael Painter
    • , David Wilkie
    • , Hedley Grantham
    • , Cristián Samper
    •  & Stephanie Wang
  3. Natural Resources & Environmental Studies Institute, University of Northern British Columbia, Prince George, British Columbia, Canada

    • Oscar Venter
  4. Canadian Forest Service, Sault Ste, Marie, Ontario, Canada

    • Ian Thompson
  5. Wildlife Conservation Society Canada, Toronto, Ontario, Canada

    • Justina C. Ray
  6. The Grantham Institute - Climate Change and the Environment and Department of Infectious Disease Epidemiology, Imperial College London, London, UK

    • Kris Murray
  7. University of Maryland, College Park, MD, USA

    • Peter Potapov
  8. Division of Ornithology, American Museum of Natural History, New York, NY, USA

    • Christopher Filardi
  9. Centre for Tropical Environmental and Sustainability Science (TESS) and College of Science and Engineering, James Cook University, Cairns, Queensland, Australia

    • William F. Laurance
  10. Woods Hole Research Center, Falmouth, MA, USA

    • Richard A. Houghton
  11. Swedish University of Agricultural Sciences, Umeå, Sweden

    • Lars Laestadius
  12. Forest Trends Association, Washington DC, USA

    • Gustavo A. Silva-Chávez
  13. Global Programme on Nature for Development, United Nations Development Programme, New York, NY, USA

    • Jamison Ervin
  14. Fenner School of Environment and Society, The Australian National University, Canberra, Australian Capital Territory, Australia

    • David Lindenmayer

Authors

  1. Search for James E. M. Watson in:

  2. Search for Tom Evans in:

  3. Search for Oscar Venter in:

  4. Search for Brooke Williams in:

  5. Search for Ayesha Tulloch in:

  6. Search for Claire Stewart in:

  7. Search for Ian Thompson in:

  8. Search for Justina C. Ray in:

  9. Search for Kris Murray in:

  10. Search for Alvaro Salazar in:

  11. Search for Clive McAlpine in:

  12. Search for Peter Potapov in:

  13. Search for Joe Walston in:

  14. Search for John G. Robinson in:

  15. Search for Michael Painter in:

  16. Search for David Wilkie in:

  17. Search for Christopher Filardi in:

  18. Search for William F. Laurance in:

  19. Search for Richard A. Houghton in:

  20. Search for Sean Maxwell in:

  21. Search for Hedley Grantham in:

  22. Search for Cristián Samper in:

  23. Search for Stephanie Wang in:

  24. Search for Lars Laestadius in:

  25. Search for Rebecca K. Runting in:

  26. Search for Gustavo A. Silva-Chávez in:

  27. Search for Jamison Ervin in:

  28. Search for David Lindenmayer in:

Contributions

J.E.M.W. and T.E. conceived the study. The remaining authors provided ideas and critical feedback.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to James E. M. Watson.

Electronic supplementary material

  1. Supplementary Table

    Description of each study represented in Figure 2 with associated references

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/s41559-018-0490-x

Further reading