The origin and expansion of Pama–Nyungan languages across Australia

  • Nature Ecology & Evolutionvolume 2pages741749 (2018)
  • doi:10.1038/s41559-018-0489-3
  • Download Citation
Published online:


It remains a mystery how Pama–Nyungan, the world’s largest hunter-gatherer language family, came to dominate the Australian continent. Some argue that social or technological advantages allowed rapid language replacement from the Gulf Plains region during the mid-Holocene. Others have proposed expansions from refugia linked to climatic changes after the last ice age or, more controversially, during the initial colonization of Australia. Here, we combine basic vocabulary data from 306 Pama–Nyungan languages with Bayesian phylogeographic methods to explicitly model the expansion of the family across Australia and test between these origin scenarios. We find strong and robust support for a Pama–Nyungan origin in the Gulf Plains region during the mid-Holocene, implying rapid replacement of non-Pama–Nyungan languages. Concomitant changes in the archaeological record, together with a lack of strong genetic evidence for Holocene population expansion, suggests that Pama–Nyungan languages were carried as part of an expanding package of cultural innovations that probably facilitated the absorption and assimilation of existing hunter-gatherer groups.

  • Subscribe to Nature Ecology & Evolution for full access:



Additional access options:

Already a subscriber?  Log in  now or  Register  for online access.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Bellwood, P. First Migrants: Ancient Migration in Global Perspective (Wiley Blackwell, Chichester, 2013).

  2. 2.

    McConvell, P. & Bowern, C. The prehistory and internal relationships of Australian languages. Lang. Linguist. Compass 5, 19–32 (2011).

  3. 3.

    Malaspinas, A.-S. et al. A genomic history of Aboriginal Australia. Nature 538, 207–214 (2016).

  4. 4.

    Tobler, R. et al. Aboriginal mitogenomes reveal 50,000 years of regionalism in Australia. Nature 544, 180–184 (2017).

  5. 5.

    Evans, N. & McConvell, P. in Archaeology and Language II: Archaeological Data and Linguistic Hypotheses (eds Blench, R. & Spriggs, M.) 174–192 (Routledge, London, 1998).

  6. 6.

    Bowern, C. in Linguistic Areas (eds Matras, Y. et al.) 244–265 (Palgrave Macmillan, London, 2006).

  7. 7.

    Evans, N. & Jones, R. in Archaeology and Linguistics: Aboriginal Australia in Global Perspective (eds McConvell, P. & Evans, N.) 385–417 (Oxford Univ. Press, Melbourne & New York, 1997).

  8. 8.

    O’Grady, G. N. & Hale, K. L. in Australian Languages: Classification and the Comparative Method (eds Bowern, C. & Koch, H.) 69–92 (John Benjamins, Amsterdam, 2004).

  9. 9.

    McConvell, P. Backtracking to Babel: the chronology of Pama–Nyungan expansion in Australia. Archaeol. Ocean. 31, 125–144 (1996).

  10. 10.

    Pugach, I., Delfin, F., Gunnarsdóttir, E., Kayser, M. & Stoneking, M. Genome-wide data substantiate Holocene gene flow from India to Australia. Proc. Natl Acad. Sci. USA 110, 1803–1808 (2013).

  11. 11.

    Williams, A. N., Ulm, S., Turney, C. S. M., Rohde, D. & White, G. Holocene demographic changes and the emergence of complex societies in prehistoric Australia. PLoS ONE 10, e0128661 (2015).

  12. 12.

    Clendon, M. Reassessing Australia’s linguistic prehistory. Curr. Anthropol. 47, 39–61 (2006).

  13. 13.

    Veth, P. Islands in the interior: a model for the colonization of Australia’s arid zone. Archaeol. Ocean. 24, 81–92 (1989).

  14. 14.

    Smith, M. The Archaeology of Australia’s Deserts (Cambridge Univ. Press, Cambridge, 2013).

  15. 15.

    Williams, A. N., Ulm, S., Cook, A. R., Langley, M. C. & Collard, M. Human refugia in Australia during the last glacial maximum and terminal Pleistocene: a geospatial analysis of the 25–12 ka Australian archaeological record. J. Archaeol. Sci. 40, 4612–4625 (2013).

  16. 16.

    Dixon, R. M. W. The Rise and Fall of Languages (Cambridge Univ. Press, Cambridge & New York, 1997).

  17. 17.

    Dixon, R. M. W. in Areal Diffusion and Genetic Inheritance: Problems in Comparative Linguistics (eds Aikenvald, A. Y. & Dixon, R. M. W.) 64–104 (Oxford Univ. Press, Oxford & New York, 2001).

  18. 18.

    Bowern, C. & Atkinson, Q. Computational phylogenetics and the internal structure of Pama–Nyungan. Language 88, 817–845 (2012).

  19. 19.

    O’Grady, G. N., Wurm, S. A. & Hale, K. L. Aboriginal Languages of Australia: (a Preliminary Classification) (Univ. Victoria, Victoria, BC, 1966).

  20. 20.

    Bergsland, K. & Vogt, H. On the validity of glottochronology. Curr. Anthropol. 3, 115–153 (1962).

  21. 21.

    Redd, A. J. et al. Gene flow from the Indian subcontinent to Australia: evidence from the Y chromosome. Curr. Biol. 12, 673–677 (2002).

  22. 22.

    Hudjashov, G. et al. Revealing the prehistoric settlement of Australia by Y chromosome and mtDNA analysis. Proc. Natl Acad. Sci. USA 104, 8726–8730 (2007).

  23. 23.

    McEvoy, B. P. et al. Whole-genome genetic diversity in a sample of Australians with deep Aboriginal ancestry. Am. J. Hum. Genet. 87, 297–305 (2010).

  24. 24.

    Bergström, A. et al. Deep roots for Aboriginal Australian Y chromosomes. Curr. Biol. 26, 809–813 (2016).

  25. 25.

    Lemey, P., Rambaut, A., Welch, J. J. & Suchard, M. A. Phylogeography takes a relaxed random walk in continuous space and time. Mol. Biol. Evol. 27, 1877–1885 (2010).

  26. 26.

    Bouckaert, R. et al. Mapping the origins and expansion of the Indo-European language family. Science 337, 957–960 (2012).

  27. 27.

    Grollemund, R. et al. Bantu expansion shows that habitat alters the route and pace of human dispersals. Proc. Natl Acad. Sci. USA 112, 13296–13301 (2015).

  28. 28.

    Bowern, C. Chirila: contemporary and historical resources for the Indigenous languages of Australia. Lang. Doc. Conserv. 10, 1–45 (2016).

  29. 29.

    O’Grady, G. N. in Australian Linguistic Studies (ed. Wurm, S. A.) 107–139 (Pacific Linguistics, Canberra, 1979).

  30. 30.

    Blake, B. J. in Aboriginal Linguistics 1 1–90 (Univ. New England, Armidale, 1988).

  31. 31.

    Evans, N. in Aboriginal Linguistics 1 91–110 (Univ. New England, Armidale, 1988).

  32. 32.

    Blake, B. J. in Language and History: Essays in Honour of Luise A. Hercus (eds Austin, P. et al.) 49–66 (Australian National Univ., Canberra, 1990).

  33. 33.

    Evans, N. Australian languages reconsidered: a review of Dixon (2002). Ocean. Linguist. 44, 242–286 (2005).

  34. 34.

    Drummond, A. J., Ho, S. Y. W., Phillips, M. J. & Rambaut, A. Relaxed phylogenetics and dating with confidence. PLoS Biol. 4, e88 (2006).

  35. 35.

    Hill, J. H. in Language, Archaeology, and History (ed. Terrell, J.) 257–282 (Bergin and Garvey, Westport, 2001).

  36. 36.

    Bowern, C. et al. Does lateral transmission obscure inheritance in hunter-gatherer languages? PLoS ONE 6, e25195 (2011).

  37. 37.

    Greenhill, S. J., Currie, T. E. & Gray, R. D. Does horizontal transmission invalidate cultural phylogenies? Proc. R. Soc. B 276, 2299–2306 (2009).

  38. 38.

    Gray, R. D., Drummond, A. J. & Greenhill, S. J. Language phylogenies reveal expansion pulses and pauses in Pacific settlement. Science 323, 479–483 (2009).

  39. 39.

    Lourandos, H. Intensification: a late Pleistocene–Holocene archaeological sequence from southwestern Victoria. Archaeol. Ocean. 18, 81–94 (1983).

  40. 40.

    Lourandos, H. Continent of Hunter-gatherers: New Perspectives in Australian Prehistory (Cambridge Univ. Press, Cambridge, 1997).

  41. 41.

    Haberle, S. G. & David, B. Climates of change: human dimensions of Holocene environmental change in low latitudes of the PEPII transect. Quat. Int. 118, 165–179 (2004).

  42. 42.

    McNiven, I. J., De Maria, N., Weisler, M. & Lewis, T. Darumbal voyaging: intensifying use of central Queensland’s Shoalwater Bay islands over the past 5000 years. Archaeol. Ocean. 49, 2–42 (2014).

  43. 43.

    Smith, M. A. The antiquity of seedgrinding in arid Australia. Archaeol. Ocean. 21, 29–39 (1986).

  44. 44.

    David, B. & Cole, N. Rock art and inter-regional interaction in northeastern Australian prehistory. Antiquity 64, 788–806 (1990).

  45. 45.

    Hiscock, P. Pattern and context in the Holocene proliferation of backed artifacts in Australia. Archeol. Pap. Am. Anthropol. Assoc. 12, 163–177 (2002).

  46. 46.

    Hiscock, P. The Archaeology of Ancient Australia (Routledge, London & New York, 2008).

  47. 47.

    Kayser, M. et al. Independent histories of human Y chromosomes from Melanesia and Australia. Am. J. Human. Genet. 68, 173–190 (2001).

  48. 48.

    Cavalli-Sforza, L. L., Menozzi, P. & Piazza, A. Demic expansions and human evolution. Science 259, 639–646 (1993).

  49. 49.

    Diamond, J. & Bellwood, P. Farmers and their languages: the first expansions. Science 300, 597–603 (2003).

  50. 50.

    Richerson, P. J., Boyd, R. & Henrich, J. Gene-culture coevolution in the age of genomics. Proc. Natl Acad. Sci. USA 107, 8985–8992 (2010).

  51. 51.

    Evans, N. The Non-Pama–Nyungan Languages of Northern Australia: Comparative Studies of the Continent’s Most Linguistically Complex Region (Australian National Univ., Canberra, 2003).

  52. 52.

    Hock, H. H. & Joseph, B. D. Language History, Language Change, and Language Relationship: An Introduction to Historical and Comparative Linguistics (Mouton de Gruyter, Berlin, 1996).

  53. 53.

    Cysouw, M. & Good, J. Languoid, doculect, and glossonym: formalizing the notion ‘language’. Lang. Doc. Conserv. 7, 331–359 (2013).

  54. 54.

    Bouckaert, R. R. et al. BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS. Comput. Biol. 10, e1003537 (2014).

  55. 55.

    Ayres, D. L. et al. BEAGLE: an application programming interface and high-performance computing library for statistical phylogenetics. Syst. Biol. 61, 170–173 (2011).

  56. 56.

    Gray, R. D. & Atkinson, Q. D. Language-tree divergence times support the Anatolian theory of Indo-European origin. Nature 426, 435–439 (2003).

  57. 57.

    Kitchen, A., Ehret, C., Assefa, S. & Mulligan, C. J. Bayesian phylogenetic analysis of semitic languages identifies an Early Bronze Age origin of Semitic in the Near East. Proc. R. Soc. B 276, 2703–2710 (2009).

  58. 58.

    Lee, S. & Hasegawa, T. Bayesian phylogenetic analysis supports an agricultural origin of Japonic languages. Proc. R. Soc. Lond. B 278, 3662–3669 (2011).

  59. 59.

    Lee, S. & Hasegawa, T. Evolution of the Ainu language in space and time. PLoS ONE 8, e62243 (2013).

  60. 60.

    Walker, R. S. & Ribeiro, L. A. Bayesian phylogeography of the Arawak expansion in lowland South America. Proc. R. Soc. B 278, 2562–2567 (2011).

  61. 61.

    Stadler, T., Kühnert, D., Bonhoeffer, S. & Drummond, A. J. Birth–death skyline plot reveals temporal changes of epidemic spread in HIV and hepatitis C virus (HCV). Proc. Natl Acad. Sci. USA 110, 228–233 (2013).

  62. 62.

    Gernhard, T. The conditioned reconstructed process. J. Theor. Biol. 253, 769–778 (2008).

  63. 63.

    O’Grady, G. N., Voegelin, C. F. & Voegelin, F. M. Languages of the world: Indo-Pacific fascicle six. Anthropol. Ling. 8, 1–197 (1966).

  64. 64.

    Wurm, S. A., Mühlhäusler, P. & Tryon, D. T. Atlas of Languages of Intercultural Communication in the Pacific, Asia, and the Americas: Vol I: Maps. Vol II: Texts (Walter de Gruyter, Berlin, 1996).

  65. 65.

    Koch, H. & Nordlinger, R. in The Languages and Linguistics of Australia: A Comprehensive Guide 23–90 (Walter de Gruyter, Berlin, 2014).

  66. 66.

    Tuffley, C. & Steel, M. Modeling the covarion hypothesis of nucleotide substitution. Math. Biosci. 147, 63–91 (1998).

  67. 67.

    Nicholls, G. K. & Gray, R. D. Dated ancestral trees from binary trait data and their application to the diversification of languages. J. R. Stat. Soc. B Stat. Methodol. 70, 545–566 (2008).

  68. 68.

    Alekseyenko, A. V., Lee, C. J. & Suchard, M. A. Wagner and Dollo: a stochastic duet by composing two parsimonious solos. Syst. Biol. 57, 772–784 (2008).

  69. 69.

    Atkinson, Q., Nicholls, G., Welch, D. & Gray, R. From words to dates: water into wine, mathemagic or phylogenetic inference? Trans. Philol. Soc. 103, 193–219 (2005).

  70. 70.

    Hasegawa, M., Kishino, H. & Yano, T. Dating of the human–ape splitting by a molecular clock of mitochondrial DNA. J. Mol. Evol. 22, 160–174 (1985).

  71. 71.

    Yang, Z. Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: approximate methods. J. Mol. Evol. 39, 306–314 (1994).

  72. 72.

    Chang, W., Cathcart, C., Hall, D. & Garrett, A. Ancestry-constrained phylogenetic analysis supports the Indo-European steppe hypothesis. Language 91, 194–244 (2015).

  73. 73.

    Pagel, M., Atkinson, Q. D. & Meade, A. Frequency of word-use predicts rates of lexical evolution throughout Indo-European history. Nature 449, 717–720 (2007).

  74. 74.

    Veth, P. Origins of the Western Desert language: convergence in linguistic and archaeological space and time models. Archaeol. Ocean. 35, 11–19 (2000).

  75. 75.

    Thorley, P. & Gunn, R. Archaeological research from the eastern border lands of the Western Desert. In Paper for the Western Desert Origins Workshop (Australian Linguistic Institute, Canberra, 1996).

  76. 76.

    Kass, R. E. & Raftery, A. E. Bayes factors. J. Am. Stat. Assoc. 90, 773–795 (1995).

  77. 77.

    Baele, G., Li, W. L. S., Drummond, A. J., Suchard, M. A. & Lemey, P. Accurate model selection of relaxed molecular clocks in Bayesian phylogenetics. Mol. Biol. Evol. 30, 239–243 (2013).

  78. 78.

    Bouckaert, R. Phylogeography by diffusion on a sphere: whole world phylogeography. PeerJ 4, e2406 (2016).

  79. 79.

    Stewart, W. J. Introduction to the Numerical Solution of Markov Chains Vol. 41 (Princeton Univ. Press, Princeton, 1994).

  80. 80.

    Skiena, S. Dijkstra’s Algorithm Implementing Discrete Mathematics: Combinatorics and Graph Theory with Mathematica 225–227 (Addison-Wesley, Reading, MA, 1990).

Download references


We thank P. Hiscock, D. Kühnert, M. Smith, M. Stoneking, P. Veth and A. Williams for helpful advice. R.R.B. and Q.D.A. were supported by a Royal Society of New Zealand Marsden grant (UOA1308). Q.D.A. was supported by a Rutherford Discovery Fellowship (RDF-UOA1101). C.B. is supported by National Science Foundation grants BCS-0844550 and BCS-1423711.

Author information


  1. Center of Computational Evolution, University of Auckland, Auckland, New Zealand

    • Remco R. Bouckaert
  2. Max Planck Institute for the Science of Human History, Jena, Germany

    • Remco R. Bouckaert
    •  & Quentin D. Atkinson
  3. Department of Linguistics, Yale University, New Haven, CT, USA

    • Claire Bowern
  4. School of Psychology, University of Auckland, Auckland, New Zealand

    • Quentin D. Atkinson


  1. Search for Remco R. Bouckaert in:

  2. Search for Claire Bowern in:

  3. Search for Quentin D. Atkinson in:


C.B. and Q.D.A. conceived the study. C.B. collected and prepared the data. R.R.B. designed and performed the analyses and prepared the figures and Methods, with input from Q.D.A. and C.B. Q.D.A. wrote the main text with extensive input from C.B. and R.R.B.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Quentin D. Atkinson.

Supplementary information

  1. Supplementary Information

    Supplementary Figures 1–6, Supplementary Tables 1–8, Supplementary Methods, Supplementary Notes 1–2, Supplementary References

  2. Life Sciences Reporting Summary

  3. Supplementary Data File 1

    BEAST 2 ( XML file containing the cognate presence/absence data, model parameterization and priors for our main analysis

  4. Supplementary Data File 2

    Annotated maximum clade credibility tree for the main analysis (from Figure 2 and Supplementary Figure 4) in the nexus format