Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Dynamic evolution of regulatory element ensembles in primate CD4+ T cells


How evolutionary changes at enhancers affect the transcription of target genes remains an important open question. Previous comparative studies of gene expression have largely measured the abundance of messenger RNA, which is affected by post-transcriptional regulatory processes, hence limiting inferences about the mechanisms underlying expression differences. Here, we directly measured nascent transcription in primate species, allowing us to separate transcription from post-transcriptional regulation. We used precision run-on and sequencing to map RNA polymerases in resting and activated CD4+ T cells in multiple human, chimpanzee and rhesus macaque individuals, with rodents as outgroups. We observed general conservation in coding and non-coding transcription, punctuated by numerous differences between species, particularly at distal enhancers and non-coding RNAs. Genes regulated by larger numbers of enhancers are more frequently transcribed at evolutionarily stable levels, despite reduced conservation at individual enhancers. Adaptive nucleotide substitutions are associated with lineage-specific transcription and at one locus, SGPP2, we predict and experimentally validate that multiple substitutions contribute to human-specific transcription. Collectively, our findings suggest a pervasive role for evolutionary compensation across ensembles of enhancers that jointly regulate target genes.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Maps of primary transcription in CD4+ T cells.
Fig. 2: Frequency of changes in TRE transcription.
Fig. 3: Evolutionary changes in TRE transcription correlate with DNA sequence conservation.
Fig. 4: Changes in non-coding RNA transcription predict changes in gene transcription.
Fig. 5: TRE conservation correlates with loop interactions and distance to gene promoters.
Fig. 6: Stabilizing selection on protein-coding gene transcription.


  1. 1.

    Jacob, F. & Monod, J. Genetic regulatory mechanisms in the synthesis of proteins. J. Mol. Biol. 3, 318–356 (1961).

    CAS  Article  Google Scholar 

  2. 2.

    Britten, R. J. & Davidson, E. H. Gene regulation for higher cells: a theory. Science 165, 349–357 (1969).

    CAS  Article  Google Scholar 

  3. 3.

    King, M. C. & Wilson, A. C. Evolution at two levels in humans and chimpanzees. Science 188, 107–116 (1975).

    CAS  Article  Google Scholar 

  4. 4.

    Rockman, M. V. et al. Ancient and recent positive selection transformed opioid cis-regulation in humans. PLoS. Biol. 3, e387 (2005).

    Article  Google Scholar 

  5. 5.

    Prabhakar, S. et al. Human-specific gain of function in a developmental enhancer. Science 321, 1346–1350 (2008).

    CAS  Article  Google Scholar 

  6. 6.

    Capra, J. A., Erwin, G. D., McKinsey, G., Rubenstein, J. L. R. & Pollard, K. S. Many human accelerated regions are developmental enhancers. Phil. Trans. R. Soc. B. 368, 20130025 (2013).

    Article  Google Scholar 

  7. 7.

    McLean, C. Y. et al. Human-specific loss of regulatory DNA and the evolution of human-specific traits. Nature 471, 216–219 (2011).

    CAS  Article  Google Scholar 

  8. 8.

    Arbiza, L. et al. Genome-wide inference of natural selection on human transcription factor binding sites. Nat. Genet. 45, 723–729 (2013).

    CAS  Article  Google Scholar 

  9. 9.

    Wilson, M. D. et al. Species-specific transcription in mice carrying human chromosome 21. Science 322, 434–438 (2008).

    CAS  Article  Google Scholar 

  10. 10.

    Haygood, R., Fedrigo, O., Hanson, B., Yokoyama, K.-D. & Wray, G. A. Promoter regions of many neural- and nutrition-related genes have experienced positive selection during human evolution. Nat. Genet. 39, 1140–1144 (2007).

    CAS  Article  Google Scholar 

  11. 11.

    Torgerson, D. G. et al. Evolutionary processes acting on candidate cis-regulatory regions in humans inferred from patterns of polymorphism and divergence. PLoS. Genet. 5, e1000592 (2009).

    Article  Google Scholar 

  12. 12.

    Cotney, J. et al. The evolution of lineage-specific regulatory activities in the human embryonic limb. Cell 154, 185–196 (2013).

    CAS  Article  Google Scholar 

  13. 13.

    Schmidt, D. et al. Five-vertebrate ChIP-Seq reveals the evolutionary dynamics of transcription factor binding. Science 328, 1036–1040 (2010).

    CAS  Article  Google Scholar 

  14. 14.

    Ballester, B. et al. Multi-species, multi-transcription factor binding highlights conserved control of tissue-specific biological pathways. eLife 3, e02626 (2014).

    Article  Google Scholar 

  15. 15.

    Vierstra, J. et al. Mouse regulatory DNA landscapes reveal global principles of cis-regulatory evolution. Science 346, 1007–1012 (2014).

    CAS  Article  Google Scholar 

  16. 16.

    Arnold, C. D. et al. Quantitative genome-wide enhancer activity maps for five Drosophila species show functional enhancer conservation and turnover during cis-regulatory evolution. Nat. Genet. 46, 685–692 (2014).

    CAS  Article  Google Scholar 

  17. 17.

    Doniger, S. W. & Fay, J. C. Frequent gain and loss of functional transcription factor binding sites. PLoS. Comput. Biol. 3, e99 (2007).

    Article  Google Scholar 

  18. 18.

    Zheng, W., Zhao, H., Mancera, E., Steinmetz, L. M. & Snyder, M. Genetic analysis of variation in transcription factor binding in yeast. Nature 464, 1187–1191 (2010).

    CAS  Article  Google Scholar 

  19. 19.

    Bradley, R. K. et al. Binding site turnover produces pervasive quantitative changes in transcription factor binding between closely related Drosophila species. PLoS. Biol. 8, e1000343 (2010).

    Article  Google Scholar 

  20. 20.

    Villar, D. et al. Enhancer evolution across 20 mammalian species. Cell 160, 554–566 (2015).

    CAS  Article  Google Scholar 

  21. 21.

    Chuong, E. B., Elde, N. C. & Feschotte, C. Regulatory evolution of innate immunity through co-option of endogenous retroviruses. Science 351, 1083–1087 (2016).

    CAS  Article  Google Scholar 

  22. 22.

    Fuda, N. J., Ardehali, M. B. & Lis, J. T. Defining mechanisms that regulate RNA polymerase II transcription in vivo. Nature 461, 186–192 (2009).

    CAS  Article  Google Scholar 

  23. 23.

    Cain, C. E., Blekhman, R., Marioni, J. C. & Gilad, Y. Gene expression differences among primates are associated with changes in a histone epigenetic modification. Genetics 187, 1225–1234 (2011).

    CAS  Article  Google Scholar 

  24. 24.

    Xiao, S. et al. Comparative epigenomic annotation of regulatory DNA. Cell 149, 1381–1392 (2012).

    CAS  Article  Google Scholar 

  25. 25.

    Zhou, X. et al. Epigenetic modifications are associated with inter-species gene expression variation in primates. Genome Biol. 15, 547 (2014).

    Article  Google Scholar 

  26. 26.

    Paris, M. et al. Extensive divergence of transcription factor binding in Drosophila embryos with highly conserved gene expression. PLoS. Genet. 9, e1003748 (2013).

    CAS  Article  Google Scholar 

  27. 27.

    Cusanovich, D. A., Pavlovic, B., Pritchard, J. K. & Gilad, Y. The functional consequences of variation in transcription factor binding. PLoS. Genet. 10, e1004226 (2014).

    Article  Google Scholar 

  28. 28.

    Wong, E. S. et al. Decoupling of evolutionary changes in transcription factor binding and gene expression in mammals. Genome Res. 25, 167–178 (2015).

    CAS  Article  Google Scholar 

  29. 29.

    Hah, N., Murakami, S., Nagari, A., Danko, C. G. & Kraus, W. L. Enhancer transcripts mark active estrogen receptor binding sites. Genome Res. 23, 1210–1223 (2013).

    CAS  Article  Google Scholar 

  30. 30.

    Domené, S. et al. Enhancer turnover and conserved regulatory function in vertebrate evolution. Phil. Trans. R. Soc. B 368, 20130027 (2013).

    Article  Google Scholar 

  31. 31.

    Wunderlich, Z. et al. Krüppel expression levels are maintained through compensatory evolution of shadow enhancers. Cell. Rep. 12, 1740–1747 (2015).

    CAS  Article  Google Scholar 

  32. 32.

    Ludwig, M. Z., Bergman, C., Patel, N. H. & Kreitman, M. Evidence for stabilizing selection in a eukaryotic enhancer element. Nature 403, 564–567 (2000).

    CAS  Article  Google Scholar 

  33. 33.

    Cannavò, E. et al. Shadow enhancers are pervasive features of developmental regulatory networks. Curr. Biol. 26, 38–51 (2016).

    Article  Google Scholar 

  34. 34.

    Sanyal, A., Lajoie, B. R., Jain, G. & Dekker, J. The long-range interaction landscape of gene promoters. Nature 489, 109–113 (2012).

    CAS  Article  Google Scholar 

  35. 35.

    Vietri Rudan, M. et al. Comparative Hi-C reveals that CTCF underlies evolution of chromosomal domain architecture. Cell. Rep. 10, 1297–1309 (2015).

    CAS  Article  Google Scholar 

  36. 36.

    Khan, Z. et al. Primate transcript and protein expression levels evolve under compensatory selection pressures. Science 342, 1100–1104 (2013).

    CAS  Article  Google Scholar 

  37. 37.

    Battle, A. et al. Genomic variation. Impact of regulatory variation from RNA to protein. Science 347, 664–667 (2015).

    CAS  Article  Google Scholar 

  38. 38.

    Bauernfeind, A. L. et al. Evolutionary divergence of gene and protein expression in the brains of humans and chimpanzees. Genome Biol. Evol. 7, 2276–2288 (2015).

    CAS  Article  Google Scholar 

  39. 39.

    Pai, A. A. et al. The contribution of RNA decay quantitative trait loci to inter-individual variation in steady-state gene expression levels. PLoS. Genet. 8, e1003000 (2012).

    CAS  Article  Google Scholar 

  40. 40.

    Kwak, H., Fuda, N. J., Core, L. J. & Lis, J. T. Precise maps of RNA polymerase reveal how promoters direct initiation and pausing. Science 339, 950–953 (2013).

    CAS  Article  Google Scholar 

  41. 41.

    Danko, C. G. et al. Identification of active transcriptional regulatory elements from GRO-Seq data. Nat. Methods 12, 433–438 (2015).

    CAS  Article  Google Scholar 

  42. 42.

    Mahat, D. B. et al. Base-pair-resolution genome-wide mapping of active RNA polymerases using precision nuclear run-on (PRO-Seq). Nat. Protoc. 11, 1455–1476 (2016).

    Article  Google Scholar 

  43. 43.

    Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-Seq data with DESeq2. Genome Biol. 15, 550 (2014).

    Article  Google Scholar 

  44. 44.

    Prescott, S. L. et al. Enhancer divergence and cis-regulatory evolution in the human and chimp neural cres. Cell 163, 68–83 (2015).

    CAS  Article  Google Scholar 

  45. 45.

    Zentner, G. E., Tesar, P. J. & Scacheri, P. C. Epigenetic signatures distinguish multiple classes of enhancers with distinct cellular functions. Genome Res. 21, 1273–1283 (2011).

    CAS  Article  Google Scholar 

  46. 46.

    Gronau, I., Arbiza, L., Mohammed, J. & Siepel, A. Inference of natural selection from interspersed genomic elements based on polymorphism and divergence. Mol. Biol. Evol. 30, 1159–1171 (2013).

    CAS  Article  Google Scholar 

  47. 47.

    Berthelot, C., Villar, D., Horvath, J. E., Odom, D. T. & Flicek, P. Complexity and conservation of regulatory landscapes underlie evolutionary resilience of mammalian gene expression. Nat. Ecol. Evol. 2, 152–163 (2017).

  48. 48.

    Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. Journal. 17, 10–12 (2011).

    Article  Google Scholar 

  49. 49.

    Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    CAS  Article  Google Scholar 

  50. 50.

    Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).

    CAS  Article  Google Scholar 

  51. 51.

    Kuhn, R. M., Haussler, D. & Kent, W. J. The UCSC genome browser and associated tools. Brief. Bioinform. 14, 144–161 (2013).

    CAS  Article  Google Scholar 

  52. 52.

    Zhao, H. et al. CrossMap: a versatile tool for coordinate conversion between genome assemblies. Bioinformatics 30, 1006–1007 (2014).

    Article  Google Scholar 

  53. 53.

    Kent, W. J., Baertsch, R., Hinrichs, A., Miller, W. & Haussler, D. Evolution’s cauldron: duplication, deletion, and rearrangement in the mouse and human genomes. Proc. Natl. Acad. Sci. USA 100, 11484–11489 (2003).

    CAS  Article  Google Scholar 

  54. 54.

    Roadmap Epigenomics Consortium et al. Integrative analysis of 111 reference human epigenomes. Nature 518, 317–330 (2015).

    Article  Google Scholar 

  55. 55.

    Chepelev, I., Wei, G., Wangsa, D., Tang, Q. & Zhao, K. Characterization of genome-wide enhancer–promoter interactions reveals co-expression of interacting genes and modes of higher order chromatin organization. Cell. Res. 22, 490–503 (2012).

    CAS  Article  Google Scholar 

  56. 56.

    Javierre, B. M. et al. Lineage-specific genome architecture links enhancers and non-coding disease variants to target gene promoters. Cell 167, 1369–1384.e19 (2016).

    CAS  Article  Google Scholar 

  57. 57.

    Rao, S. S. P. et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159, 1665–1680 (2014).

    CAS  Article  Google Scholar 

  58. 58.

    Hnisz, D. et al. Super-enhancers in the control of cell identity and disease. Cell 155, 934–947 (2013).

    CAS  Article  Google Scholar 

  59. 59.

    Weirauch, M. T. et al. Determination and inference of eukaryotic transcription factor sequence specificity. Cell 158, 1431–1443 (2014).

    CAS  Article  Google Scholar 

  60. 60.

    Wang, Z., Martins, A. L. & Danko, C. G. RTFBSDB: an integrated framework for transcription factor binding site analysis. Bioinformatics 32, 3024–3026, (2016).

    CAS  Article  Google Scholar 

  61. 61.

    Sherwood, R. I. et al. Discovery of directional and nondirectional pioneer transcription factors by modeling DNase profile magnitude and shape. Nat. Biotechnol. 32, 171–178 (2014).

    CAS  Article  Google Scholar 

  62. 62.

    Pollard, K. S., Hubisz, M. J., Rosenbloom, K. R. & Siepel, A. Detection of nonneutral substitution rates on mammalian phylogenies. Genome Res. 20, 110–121 (2010).

    CAS  Article  Google Scholar 

  63. 63.

    Tehranchi, A. K. et al. Pooled ChIP-Seq links variation in transcription factor binding to complex disease risk. Cell 165, 730–741 (2016).

    CAS  Article  Google Scholar 

  64. 64.

    Hah, N. et al. A rapid, extensive, and transient transcriptional response to estrogen signaling in breast cancer cells. Cell 145, 622–634 (2011).

    CAS  Article  Google Scholar 

  65. 65.

    Chae, M., Danko, C. G. & Kraus, W. L. groHMM: a computational tool for identifying unannotated and cell type-specific transcription units from global run-on sequencing data. BMC Bioinforma. 16, 222 (2015).

    Article  Google Scholar 

  66. 66.

    Luo, X., Chae, M., Krishnakumar, R., Danko, C. G. & Kraus, W. L. Dynamic reorganization of the AC16 cardiomyocyte transcriptome in response to TNFα signaling revealed by integrated genomic analyses. BMC Genom. 15, 155 (2014).

    Article  Google Scholar 

  67. 67.

    Kozomara, A. & Griffiths-Jones, S. miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res. 42, D68–D73 (2014).

    CAS  Article  Google Scholar 

  68. 68.

    Dukler, N. et al. Nascent RNA sequencing reveals a dynamic global transcriptional response at genes and enhancers to the natural medicinal compound celastrol. Genome Res. 27, 1816–1829, (2017).

    CAS  Article  Google Scholar 

  69. 69.

    Danko, C. G. et al. Signaling pathways differentially affect RNA polymerase II initiation, pausing, and elongation rate in cells. Mol. Cell. 50, 212–222 (2013).

    CAS  Article  Google Scholar 

  70. 70.

    Neph, S. et al. BEDOPS: high-performance genomic feature operations. Bioinformatics 28, 1919–1920 (2012).

    CAS  Article  Google Scholar 

  71. 71.

    Franco, H. L., Nagari, A. & Kraus, W. L. TNFα signaling exposes latent estrogen receptor binding sites to alter the breast cancer cell transcriptome. Mol. Cell. 58, 21–34 (2015).

    CAS  Article  Google Scholar 

  72. 72.

    Thakore, P. I. et al. Highly specific epigenome editing by CRISPR–Cas9 repressors for silencing of distal regulatory elements. Nat. Methods 12, 1143–1149 (2015).

    CAS  Article  Google Scholar 

  73. 73.

    Pham, H., Kearns, N. A. & Maehr, R. Transcriptional regulation with CRISPR/Cas9 effectors in mammalian cells. Methods Mol. Biol. 1358, 43–57 (2016).

    CAS  Article  Google Scholar 

  74. 74

    Green, R. E. et al. A draft sequence of the Neandertal genome. Science 328, 710–722 (2010).

Download references


We thank M. Jin for assistance in establishing the magnetic separation of CD4+ T cells, J. Rogers for help establishing contacts with primate centres, L. Core, H. Kwak, N. Fuda and I. Jonkers for assistance troubleshooting the PRO-Seq library prep, and A. Wetterau for preparing nuclei for mouse and rat CD4+ T cells. This work was supported by generous seed grants from the Cornell University Center for Vertebrate Genomics, Center for Comparative and Population Genetics, National Human Genome Research Institute grant HG009309 to C.G.D., National Heart, Lung, and Blood Institute grant UHL129958A to C.G.D. and J.T.L., National Institute of General Medical Sciences grant GM102192 to A.S., National Human Genome Research Institute grant HG0070707 to A.S. and J.T.L., National Institute of Diabetes and Digestive and Kidney Diseases DK058110 to W.L.K. and Cancer Prevention and Research Institute of Texas RP160319 to W.L.K. The content is solely the responsibility of the authors and does not necessarily represent the official views of the US National Institutes of Health. Finally, we would like to thank the anonymous human and non-human primate donors who gave blood in support of this study.

Author information




L.A.C., B.A.M., C.G.D., E.J.R. and E.D.T.W. performed the CD4+ T cell extraction, validation and PRO-Seq experiments. C.G.D., Z.W., T.C., A.L.M., L.A.C. and N.D. analysed the data. C.G.D., A.S., J.T.L., W.L.K. and S.A.C. supervised the data collection and analysis. C.G.D. and A.S. wrote the paper with input from the other authors.

Corresponding authors

Correspondence to Charles G. Danko or Adam Siepel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–3, Supplementary Figures 1–15, Supplementary Tables 1–3.

Life Sciences Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Danko, C.G., Choate, L.A., Marks, B.A. et al. Dynamic evolution of regulatory element ensembles in primate CD4+ T cells. Nat Ecol Evol 2, 537–548 (2018).

Download citation

Further reading

  • LINE retrotransposons characterize mammalian tissue-specific and evolutionarily dynamic regulatory regions

    • Maša Roller
    • , Ericca Stamper
    • , Diego Villar
    • , Osagie Izuogu
    • , Fergal Martin
    • , Aisling M. Redmond
    • , Raghavendra Ramachanderan
    • , Louise Harewood
    • , Duncan T. Odom
    •  & Paul Flicek

    Genome Biology (2021)

  • A microRNA expression and regulatory element activity atlas of the mouse immune system

    • Samuel A. Rose
    • , Aleksandra Wroblewska
    • , Maxime Dhainaut
    • , Hideyuki Yoshida
    • , Jonathan M. Shaffer
    • , Anela Bektesevic
    • , Benjamin Ben-Zvi
    • , Andrew Rhoads
    • , Edy Y. Kim
    • , Bingfei Yu
    • , Yonit Lavin
    • , Miriam Merad
    • , Jason D. Buenrostro
    • , Brian D. Brown
    • , Oscar Aguilar
    • , Rhys Allan
    • , Janice Arakawa-Hoyt
    • , Jilian Astarita
    • , K. Frank Austen
    • , Nora Barrett
    • , Alev Baysoy
    • , Christophe Benoist
    • , Matthew Buechler
    • , Jason Buenrostro
    • , Maria Acebes Casanova
    • , Kyunghee Choi
    • , Kaitavjeet Chowdhary
    • , Marco Colonna
    • , Ty Crowl
    • , Tianda Deng
    • , Jigar V. Desai
    • , Fiona Desland
    • , Jiarui Ding
    • , Claudia Dominguez
    • , Daniel Dwyer
    • , Michela Frascoli
    • , Shani Gal-Oz
    • , Ananda Goldrath
    • , Ricardo Grieshaber-Bouyer
    • , Baosen Jia
    • , Tim Johanson
    • , Stefan Jordan
    • , Joonsoo Kang
    • , Varun Kapoor
    • , Ephraim Kenigsberg
    • , Joel Kim
    • , Ki wook Kim
    • , Evgeny Kiner
    • , Mitchell Kronenberg
    • , Lewis Lanier
    • , Catherine Laplace
    • , Caleb Lareau
    • , Andrew Leader
    • , Jisu Lee
    • , Assaf Magen
    • , Barbara Maier
    • , Alexandra Maslova
    • , Diane Mathis
    • , Adelle McFarland
    • , Etienne Meunier
    • , Paul Monach
    • , Sara Mostafavi
    • , Soren Muller
    • , Christoph Muus
    • , Hadas Ner-Gaon
    • , Quyhn Nguyen
    • , Peter A. Nigrovic
    • , Kouta Niizuma
    • , German Novakovsky
    • , Stephen Nutt
    • , Kayla Omilusik
    • , Adriana Ortiz-Lopez
    • , Mallory Paynich
    • , Vincent Peng
    • , Marc Potempa
    • , Rachana Pradhan
    • , Sara Quon
    • , Ricardo Ramirez
    • , Deepshika Ramanan
    • , Gwendalyn Randolph
    • , Aviv Regev
    • , Kumba Seddu
    • , Tal Shay
    • , Avishai Shemesh
    • , Justin Shyer
    • , Christopher Smilie
    • , Nick Spidale
    • , Ayshwarya Subramanian
    • , Katelyn Sylvia
    • , Julie Tellier
    • , Shannon Turley
    • , Brinda Vijaykumar
    • , Amy Wagers
    • , Chendi Wang
    • , Peter L. Wang
    • , Liang Yang
    •  & Aldrin Yim

    Nature Immunology (2021)

  • Cis and trans effects differentially contribute to the evolution of promoters and enhancers

    • Kaia Mattioli
    • , Winona Oliveros
    • , Chiara Gerhardinger
    • , Daniel Andergassen
    • , Philipp G. Maass
    • , John L. Rinn
    •  & Marta Melé

    Genome Biology (2020)

  • Towards a comprehensive catalogue of validated and target-linked human enhancers

    • Molly Gasperini
    • , Jacob M. Tome
    •  & Jay Shendure

    Nature Reviews Genetics (2020)

  • An inferred fitness consequence map of the rice genome

    • Zoé Joly-Lopez
    • , Adrian E. Platts
    • , Brad Gulko
    • , Jae Young Choi
    • , Simon C. Groen
    • , Xuehua Zhong
    • , Adam Siepel
    •  & Michael D. Purugganan

    Nature Plants (2020)


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing