Brief Communication

Molecular fossils from organically preserved Ediacara biota reveal cyanobacterial origin for Beltanelliformis

  • Nature Ecology & Evolutionvolume 2pages437440 (2018)
  • doi:10.1038/s41559-017-0438-6
  • Download Citation
Received:
Accepted:
Published online:

Abstract

The Ediacara biota (~575–541 million years ago) mark the emergence of large, complex organisms in the palaeontological record, preluding the radiation of modern animal phyla. However, their phylogenetic relationships, even at the domain level, remain controversial. We report the discovery of molecular fossils from organically preserved specimens of Beltanelliformis, demonstrating that they represent large spherical colonies of cyanobacteria. The conservation of molecular remains in organically preserved Ediacaran organisms opens a new path for unravelling the natures of the Ediacara biota.

  • Subscribe to Nature Ecology & Evolution for full access:

    $99

    Subscribe

Additional access options:

Already a subscriber?  Log in  now or  Register  for online access.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Narbonne, G. M. & Hofmann, H. J. Palaeontology 30, 647–676 (1987).

  2. 2.

    Zaika Novatsky, V. & Palij, V. Paleontol. Sb. 11, 59–65 (1974).

  3. 3.

    Seilacher, A. J. Geol. Soc. 149, 607–613 (1992).

  4. 4.

    Leonov, M. V. Geol. Soc. Spec. Publ. 286, 259–267 (2007).

  5. 5.

    Gnilovskaya, M. B., Ishchenko, A. A., Kolesnikov, Ch. M., Korenchuk, L. V. & Udal'tsov, A. P. Vendotenidy Vostochno-Evropejskoj Platformy (Nauka, Leningrad, 1988).

  6. 6.

    Aseeva, E. A. in Biostratigraphy and Paleogeographic Reconstructions of the Precambrian of Ukraine (eds Ryabenko, V. A., Aseeva, E. A. & Furtes, V. V.) 81–92 (Naukova Dumka, Kiev, 1988).

  7. 7.

    Runnegar, B. & Fedonkin, M. in The Proterozoic Biosphere: A Multidisciplinary Study (eds Schopf, J. W. & Klein, C.) 369–388 (Cambridge Univ. Press, Cambridge, 1992).

  8. 8.

    Steiner, M. & Reitner, J. Geology 29, 1119–1122 (2001).

  9. 9.

    Steiner, M. Acta Univ. Carol. Geol. 40, 645–665 (1996).

  10. 10.

    Ivantsov, A. Y., Gritsenko, V. P., Konstantinenko, L. I. & Zakrevskaya, M. A. Paleontol. J. 48, 1415–1440 (2014).

  11. 11.

    Xiao, S. & Dong, L. in Neoproterozoic Geobiology and Paleobiology (eds Xiao, S. & Kaufman, A. J.) 57–90 (Springer Netherlands, Dordrecht, 2006).

  12. 12.

    Xiao, S., Yuan, X., Steiner, M. & Knoll, A. H. J. Paleontol. 76, 347–376 (2002).

  13. 13.

    Grazhdankin, D. Stratigr. Geol. Correl. 11, 313–331 (2003).

  14. 14.

    Kodner, R. B., Pearson, A., Summons, R. E. & Knoll, A. H. Geobiology 6, 411–420 (2008).

  15. 15.

    Alexander, R., Berwick, L. & Pierce, K. Org. Geochem. 42, 540–547 (2011).

  16. 16.

    Volkman, J. K. et al. Org. Geochem. 29, 1163–1179 (1998).

  17. 17.

    Allard, B. & Templier, J. Phytochemistry 57, 459–467 (2001).

  18. 18.

    Shaw, D. G. & Wiggs, J. N. Phytochemistry 18, 2025–2027 (1979).

  19. 19.

    Versteegh, G. J. M. & Blokker, P. Phycol. Res. 52, 325–339 (2004).

  20. 20.

    Ricci, J. N., Morton, R., Kulkarni, G., Summers, M. L. & Newman, D. K. Geobiology 15, 173–183 (2016).

  21. 21.

    Blumenberg, M. et al. Environ. Microbiol. 8, 1220–1227 (2006).

  22. 22.

    Nagovitsyn, A. in PALEOSTRAT-2015 (ed Alekseev, A. S.) 57–58 (PIN RAS, Moscow, 2015).

  23. 23.

    Jones, J. G. Microbiology 59, 145–152 (1969).

  24. 24.

    Gelpi, E., Oró, J., Schneider, H. J. & Bennett, E. O. Science 161, 700–701 (1968).

  25. 25.

    Matsumoto, G. I., Yamada, S., Ohtani, S., Broady, P. A. & Nagashima, H. Proc. NIPR Symp. Polar Biol. 9, 275–282 (1996).

  26. 26.

    Schouten, S. et al. Geochim. Cosmochim. Acta 62, 1397–1406 (1998).

  27. 27.

    Xiao, S. & Laflamme, M. Trends Ecol. Evol. 24, 31–40 (2009).

Download references

Acknowledgements

This study was funded by the Australian Research Council grants DP160100607 and DP170100556 (to J.J.B.). I.B. gratefully acknowledges an Australian Research Council Research Training Program scholarship. The authors are grateful to E. Luzhnaya, A. Nagovitsyn, M. Luzhnaya, P. Rychkov and V. Rychkov for help in the field, L. Zaytseva and E. Luzhnaya for scanning electron microscope imaging of organic matter, and J. K. Volkman, S. Xiao, N. J. Butterfield and R. E. Summons for helpful comments on an earlier version of the manuscript.

Author information

Affiliations

  1. Research School of Earth Sciences, Australian National University, Canberra, Australian Capital Territory, Australia

    • Ilya Bobrovskiy
    • , Janet M. Hope
    •  & Jochen J. Brocks
  2. Borissiak Paleontological Institute, Russian Academy of Sciences, Moscow, Russia

    • Anna Krasnova
    •  & Andrey Ivantsov
  3. Faculty of Geology, Lomonosov Moscow State University, Moscow, Russia

    • Anna Krasnova

Authors

  1. Search for Ilya Bobrovskiy in:

  2. Search for Janet M. Hope in:

  3. Search for Anna Krasnova in:

  4. Search for Andrey Ivantsov in:

  5. Search for Jochen J. Brocks in:

Contributions

I.B. conceived the study and performed the analyses. I.B. and A.K. collected the samples. J.M.H. helped with the methodology. A.I. provided palaeontological advice. I.B. and J.J.B. interpreted the results and wrote the paper.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Jochen J. Brocks.

Supplementary information

  1. Supplementary Information

    Supplementary methods, information, references and figures

  2. Life Sciences Reporting Summary

  3. Supplementary Dataset

    A numerical computation of the percentage of hopanes in the Beltanelliformis extract