Genomic tools for behavioural ecologists to understand repeatable individual differences in behaviour

Abstract

Behaviour is a key interface between an animal’s genome and its environment. Repeatable individual differences in behaviour have been extensively documented in animals, but the molecular underpinnings of behavioural variation among individuals within natural populations remain largely unknown. Here, we offer a critical review of when molecular techniques may yield new insights, and we provide specific guidance on how and whether the latest tools available are appropriate given different resources, system and organismal constraints, and experimental designs. Integrating molecular genetic techniques with other strategies to study the proximal causes of behaviour provides opportunities to expand rapidly into new avenues of exploration. Such endeavours will enable us to better understand how repeatable individual differences in behaviour have evolved, how they are expressed and how they can be maintained within natural populations of animals.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: A flowchart of a hypothetical study emphasizing the benefit of integrating multiple tools to understand repeatable behavioural variation; in this case, combining RNA-Seq and ChIP-Seq to investigate differences in behavioural plasticity.

References

  1. 1.

    Dingemanse, N. J., Both, C., Drent, P. J., van Oers, K. & van Noordwijk, A. J. Repeatability and heritability of exploratory behaviour in great tits from the wild. Anim. Behav. 64, 929–938 (2002).

    Article  Google Scholar 

  2. 2.

    Sih, A., Bell, A. & Johnson, J. C. Behavioral syndromes: an ecological and evolutionary overview. Trends Ecol. Evol. 19, 372–378 (2004).

    Article  PubMed  Google Scholar 

  3. 3.

    Pruitt, J. N. & Keiser, C. N. The personality types of key catalytic individuals shape colonies’ collective behaviour and success. Anim. Behav. 93, 87–95 (2014).

    Article  Google Scholar 

  4. 4.

    Bengston, S. E. & Dornhaus, A. Be meek or be bold? A colony-level behavioural syndrome in ants. Proc. R. Soc. B 281, 20140518 (2014).

    Article  CAS  PubMed  Google Scholar 

  5. 5.

    Mackay, T. F. C. Epistasis and quantitative traits: using model organisms to study gene-gene interactions. Nat. Rev. Genet. 15, 22–33 (2014).

    Article  CAS  PubMed  Google Scholar 

  6. 6.

    Stamps, J. A. & Biro, P. A. Personality and individual differences in plasticity. Curr. Opin. Behav. Sci. 12, 18–23 (2016).

    Article  Google Scholar 

  7. 7.

    Dingemanse, N. J. & Wolf, M. Between-individual differences in behavioural plasticity within populations: causes and consequences. Anim. Behav. 85, 1031–1039 (2013).

    Article  Google Scholar 

  8. 8.

    Grafen, A. in Behavioural Ecology 2nd edn (eds Krebs, J. & Davies, N.) 62–84 (Blackwell, Oxford, 1984).

  9. 9.

    Bateson, P. & Laland, K. N. Tinbergen’s four questions: an appreciation and an update. Trends Ecol. Evol. 28, 712–718 (2013).

    Article  PubMed  Google Scholar 

  10. 10.

    Stamps, J. Behavioural processes affecting development: Tinbergen’s fourth question comes of age. Anim. Behav. 66, 1–13 (2003).

    Article  Google Scholar 

  11. 11.

    Travisano, M. & Shaw, R. G. Lost in the map. Evolution 67, 305–314 (2013).

    Article  CAS  PubMed  Google Scholar 

  12. 12.

    Paaby, A. B. & Rockman, M. V. The many faces of pleiotropy. Trends Genet. 29, 66–73 (2013).

    Article  CAS  PubMed  Google Scholar 

  13. 13.

    Zuk, M. & Balenger, S. L. Behavioral ecology and genomics: new directions, or just a more detailed map? Behav. Ecol. 25, 1277–1282 (2014).

    Article  Google Scholar 

  14. 14.

    Fitzpatrick, M. J. et al. Candidate genes for behavioural ecology. Trends Ecol. Evol. 20, 96–104 (2005).

    Article  Google Scholar 

  15. 15.

    West-Eberhard, M. J. Developmental Plasticity and Evolution. (Oxford University Press: New York, 2003).

    Google Scholar 

  16. 16.

    Saltz, J. B., Hessel, F. C. & Kelly, M. W. Trait correlations in the genomics era. Trends Ecol. Evol. 32, 279–290 (2017).

    Article  PubMed  Google Scholar 

  17. 17.

    Sabeti, P. C. et al. Genome-wide detection and characterization of positive selection in human populations. Nature 449, 913–918 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Rittschof, C. C. et al. Neuromolecular responses to social challenge: common mechanisms across mouse, stickleback fish, and honey bee. Proc. Natl Acad. Sci. USA 111, 17929–17934 (2014).

    Article  CAS  PubMed  Google Scholar 

  19. 19.

    Whitfield, C. W., Cziko, A.-M. & Robinson, G. E. gene expression profiles in the brain predict behavior in individual honey bees. Science 302, 296–299 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. 20.

    van Oers, K. & Mueller, J. C. Evolutionary genomics of animal personality. Phil. Trans. R. Soc. B 365, 3991–4000 (2010).

    Article  PubMed  Google Scholar 

  21. 21.

    Stamps, J. A. & Frankenhuis, W. E. Bayesian models of development. Trends Ecol. Evol. 31, 260–268 (2016).

    Article  PubMed  Google Scholar 

  22. 22.

    Sih, A. et al. Animal personality and state–behaviour feedbacks: a review and guide for empiricists. Trends Ecol. Evol. 30, 50–60 (2015).

    Article  PubMed  Google Scholar 

  23. 23.

    Snell-Rood, E. C. An overview of the evolutionary causes and consequences of behavioural plasticity. Anim. Behav. 85, 1004–1011 (2013).

    Article  Google Scholar 

  24. 24.

    Hirschhorn, J. N. & Daly, M. J. Genome-wide association studies for common diseases and complex traits. Nat. Rev. Genet. 6, 95–108 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. 25.

    Slate, J. From beavis to beak color: a simulation study to examine how much QTL mapping can reveal about the genetic architecture of quantitative traits. Evolution 67, 1251–1262 (2013).

    PubMed  Google Scholar 

  26. 26.

    Shaw, K. L. & Lesnick, S. C. Genomic linkage of male song and female acoustic preference QTL underlying a rapid species radiation. Proc. Natl Acad. Sci. USA 106, 9737–9742 (2009).

    Article  PubMed  Google Scholar 

  27. 27.

    Lynch, M. & Walsh, B. Genetics and Analysis of Quantitative Traits (Sinauer Associates, Sunderland, 1998).

  28. 28.

    Küpper, C. et al. A supergene determines highly divergent male reproductive morphs in the ruff. Nat. Genet. 48, 79–83 (2016).

    Article  CAS  PubMed  Google Scholar 

  29. 29.

    Bendesky, A. et al. The genetic basis of parental care evolution in monogamous mice. Nature 544, 434–439 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Berens, A. J., Hunt, J. H. & Toth, A. L. Comparative transcriptomics of convergent evolution: different genes but conserved pathways underlie caste phenotypes across lineages of eusocial insects. Mol. Biol. Evol. 32, 690–703 (2015).

    Article  CAS  PubMed  Google Scholar 

  31. 31.

    Anholt, R. R. H. et al. The genetic architecture of odor-guided behavior in Drosophila: epistasis and the transcriptome. Nat. Genet. 35, 180–184 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. 32.

    Bell, A. M. & Robinson, G. E. Behavior and the dynamic genome. Science 332, 1161–1162 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Lawniczak, M. K. & Begun, D. J. A genome-wide analysis of courting and mating responses in Drosophila melanogaster females. Genome 47, 900–910 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. 34.

    Mack, P. D., Kapelnikov, A., Heifetz, Y. & Bender, M. Mating-responsive genes in reproductive tissues of female Drosophila melanogaster. Proc. Natl Acad. Sci. USA 103, 10358–10363 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. 35.

    Carney, G. E. A rapid genome-wide response to Drosophila melanogaster social interactions. BMC Genom. 8, 288 (2007).

    Article  CAS  Google Scholar 

  36. 36.

    Cummings, M. E. et al. Sexual and social stimuli elicit rapid and contrasting genomic responses. Proc. R. Soc. B 275, 393–402 (2008).

    Article  CAS  PubMed  Google Scholar 

  37. 37.

    McGraw, L. A., Clark, A. G. & Wolfner, M. F. Post-mating gene expression profiles of female Drosophila melanogaster in response to time and to four male accessory gland proteins. Genetics 179, 1395–1408 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Fraser, B. A., Janowitz, I., Thairu, M., Travis, J. & Hughes, K. A. Phenotypic and genomic plasticity of alternative male reproductive tactics in sailfin mollies. Proc. R. Soc. B 281, 20132310 (2014).

    Article  PubMed  Google Scholar 

  39. 39.

    Mori, T. et al. Genetic basis of phenotypic plasticity for predator-induced morphological defenses in anuran tadpole, Rana pirica, using cDNA subtraction and microarray analysis. Biochem. Biophys. Res. Commun. 330, 1138–1145 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. 40.

    Sanogo, Y. O., Hankison, S., Band, M., Obregon, A. & Bell, A. M. Brain transcriptomic response of threespine sticklebacks to cues of a predator. Brain Behav. Evol. 77, 270–285 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Becks, L., Ellner, S. P., Jones, L. E. & Hairston, N. G. The functional genomics of an eco-evolutionary feedback loop: linking gene expression, trait evolution, and community dynamics. Ecol. Lett. 15, 492–501 (2012).

    Article  PubMed  Google Scholar 

  42. 42.

    Lavergne, S. G., McGowan, P. O., Krebs, C. J. & Boonstra, R. Impact of high predation risk on genome-wide hippocampal gene expression in snowshoe hares. Oecologia 176, 613–624 (2014).

    Article  PubMed  Google Scholar 

  43. 43.

    Alaux, C. et al. Honey bee aggression supports a link between gene regulation and behavioral evolution. Proc. Natl Acad. Sci. USA 106, 15400–15405 (2009).

    Article  PubMed  Google Scholar 

  44. 44.

    Sanogo, Y. O., Band, M., Blatti, C., Sinha, S. & Bell, A. M. Transcriptional regulation of brain gene expression in response to a territorial intrusion. Proc. R. Soc. B 279, 4929–4938 (2012).

    Article  CAS  PubMed  Google Scholar 

  45. 45.

    Rittschof, C. C. & Robinson, G. E. Manipulation of colony environment modulates honey bee aggression and brain gene expression. Genes Brain Behav. 12, 802–811 (2013).

    Article  CAS  PubMed  Google Scholar 

  46. 46.

    Rittschof, C. C. & Robinson, G. E. in Current Topics in Developmental Biology, Vol. 119 (ed Orgogozo, V.) 157–204 (Academic: Cambridge, 2016).

  47. 47.

    Jandt, J. M., Thomson, J. L., Geffre, A. C. & Toth, A. L. Lab rearing environment perturbs social traits: a case study with Polistes wasps. Behav. Ecol. 26, 1274–1284 (2015).

    Article  Google Scholar 

  48. 48.

    Tylee, D. S., Kawaguchi, D. M. & Glatt, S. J. On the outside, looking in: a review and evaluation of the comparability of blood and brain ‘-omes’. Am. J. Med. Genet. B 162, 595–603 (2013).

    Article  CAS  Google Scholar 

  49. 49.

    Nikolova, Y. S. & Hariri, A. R. Can we observe epigenetic effects on human brain function? Trends Cogn. Sci. 19, 366–373 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Hannon, E., Lunnon, K., Schalkwyk, L. & Mill, J. Interindividual methylomic variation across blood, cortex, and cerebellum: implications for epigenetic studies of neurological and neuropsychiatric phenotypes. Epigenetics 10, 1024–1032 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Derks, M. F. L. et al. Gene and transposable element methylation in great tit (Parus major) brain and blood. BMC Genom. 17, 332 (2016).

    Article  CAS  Google Scholar 

  52. 52.

    Cullinan, W. E., Herman, J. P., Battaglia, D. F., Akil, H. & Watson, S. J. Pattern and time course of immediate early gene expression in rat brain following acute stress. Neuroscience 64, 477–505 (1995).

    Article  CAS  PubMed  Google Scholar 

  53. 53.

    Aubin-Horth, N. & Renn, S. C. P. Genomic reaction norms: using integrative biology to understand molecular mechanisms of phenotypic plasticity. Mol. Ecol. 18, 3763–3780 (2009).

    Article  CAS  PubMed  Google Scholar 

  54. 54.

    Bukhari, S. A. et al. Temporal dynamics of neurogenomic plasticity in response to social interactions in male threespined sticklebacks. PLoS Genet. 13, e1006840 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Bell, A. M., Bukhari, S. A. & Sanogo, Y. O. Natural variation in brain gene expression profiles of aggressive and nonaggressive individual sticklebacks. Behaviour 153, 1723–1743 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Trucchi, E. et al. BsRADseq: screening DNA methylation in natural populations of non-model species. Mol. Ecol. 25, 1697–1713 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Glastad, K. M., Gokhale, K., Liebig, J. & Goodisman, M. A. D. The caste- and sex-specific DNA methylome of the termite Zootermopsis nevadensis. Sci. Rep. 6, 37110 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. 58.

    Verhulst, E. C. et al. Evidence from pyrosequencing indicates that natural variation in animal personality is associated with DRD 4 DNA methylation. Mol. Ecol. 8, 1801–1811 (2016).

    Article  CAS  Google Scholar 

  59. 59.

    Laine, V. N. et al. Evolutionary signals of selection on cognition from the great tit genome and methylome. Nat. Commun. 7, 10474 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Cronican, A. A. et al. Genome-wide alteration of histone H3K9 acetylation pattern in mouse offspring prenatally exposed to arsenic. PLoS ONE 8, e53478 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. 61.

    Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y. & Greenleaf, W. J. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat. Methods 10, 1213–1218 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. 62.

    Hunter, C. P. Genetics: a touch of elegance with RNAi. Curr. Biol. 9, R440–R442 (1999).

    Article  CAS  PubMed  Google Scholar 

  63. 63.

    Hsu, P. D., Lander, E. S. & Zhang, F. Development and applications of CRISPR-Cas9 for genome engineering. Cell 157, 1262–1278 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. 64.

    Straub, C., Granger, A. J., Saulnier, J. L. & Sabatini, B. L. CRISPR/Cas9-mediated gene knock-down in post-mitotic neurons. PLoS ONE 9, e105584 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. 65.

    Swiech, L. et al. In vivo interrogation of gene function in the mammalian brain using CRISPR-Cas9. Nat. Biotechnol. 33, 102–106 (2015).

    Article  CAS  PubMed  Google Scholar 

  66. 66.

    Peng, R., Lin, G. & Li, J. Potential pitfalls of CRISPR/Cas9-mediated genome editing. FEBS J. 283, 1218–1231 (2016).

    Article  CAS  PubMed  Google Scholar 

  67. 67.

    Chandrasekaran, S. et al. Behavior-specific changes in transcriptional modules lead to distinct and predictable neurogenomic states. Proc. Natl Acad. Sci. USA 108, 18020–18025 (2011).

    Article  PubMed  Google Scholar 

  68. 68.

    Wang, J. et al. A Y-like social chromosome causes alternative colony organization in fire ants. Nature 493, 664–668 (2013).

    Article  CAS  PubMed  Google Scholar 

  69. 69.

    Reidenbach, K. R. et al. Patterns of genomic differentiation between ecologically differentiated M and S forms of Anopheles gambiae in west and central Africa. Genome Biol. Evol. 4, 1202–1212 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. 70.

    Lawniczak, M. K. N. et al. Widespread divergence between incipient Anopheles gambiae species revealed by whole genome sequences. Science 330, 512–514 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. 71.

    Chalfin, L. et al. Mapping ecologically relevant social behaviours by gene knockout in wild mice. Nat. Commun. 5, 4569 (2014).

    Article  CAS  PubMed  Google Scholar 

  72. 72.

    Jandt, J. M. et al. Behavioural syndromes and social insects: personality at multiple levels. Biol. Rev. 89, 48–67 (2014).

    Article  PubMed  Google Scholar 

  73. 73.

    Purcell, J., Brelsford, A., Wurm, Y., Perrin, N. & Chapuisat, M. Convergent genetic architecture underlies social organization in ants. Curr. Biol. 24, 2728–2732 (2014).

    Article  CAS  PubMed  Google Scholar 

  74. 74.

    Rausher, M. D. & Delph, L. F. Commentary: when does understanding phenotypic evolution require identification of the underlying genes? Evolution 69, 1655–1664 (2015).

    Article  PubMed  Google Scholar 

  75. 75.

    Lang, G. I., Murray, A. W. & Botstein, D. The cost of gene expression underlies a fitness trade-off in yeast. Proc. Natl Acad. Sci. USA 106, 5755–5760 (2009).

    Article  PubMed  Google Scholar 

  76. 76.

    Cash, A. C., Whitfield, C. W., Ismail, N. & Robinson, G. E. Behavior and the limits of genomic plasticity: power and replicability in microarray analysis of honeybee brains. Genes Brain Behav. 4, 267–271 (2005).

    Article  CAS  PubMed  Google Scholar 

  77. 77.

    Zayed, A. & Robinson, G. E. Understanding the relationship between brain gene expression and social behavior: lessons from the honey bee. Annu. Rev. Genet. 46, 591–615 (2012).

    Article  CAS  PubMed  Google Scholar 

  78. 78.

    Cardoso, S. D., Teles, M. C. & Oliveira, R. F. Neurogenomic mechanisms of social plasticity. J. Exp. Biol. 218, 140–149 (2015).

    Article  PubMed  Google Scholar 

  79. 79.

    Réale, D. et al. Personality and the emergence of the pace-of-life syndrome concept at the population level. Phil. Trans. R. Soc. B 365, 4051–4063 (2010).

    Article  PubMed  Google Scholar 

  80. 80.

    Sanogo, Y. O. & Bell, A. M. Molecular mechanisms and the conflict between courtship and aggression in three-spined sticklebacks. Mol. Ecol. 25, 4368–4376 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  81. 81.

    Zinzow-Kramer, W. M. et al. Genes located in a chromosomal inversion are correlated with territorial song in white-throated sparrows. Genes Brain Behav. 14, 641–654 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. 82.

    Gibson, G. & Muse, S. V. A Primer of Genome Science. (Sinauer Associates: Sunderland, 2009).

    Google Scholar 

  83. 83.

    Flicek, P. & Birney, E. Sense from sequence reads: methods for alignment and assembly. Nat. Methods 6, S6–S12 (2009).

    Article  CAS  PubMed  Google Scholar 

  84. 84.

    McGary, K. L. et al. Systematic discovery of nonobvious human disease models through orthologous phenotypes. Proc. Natl Acad. Sci. USA 107, 6544–6549 (2010).

    Article  PubMed  Google Scholar 

  85. 85.

    Ashburner, M. et al. Gene ontology: tool for the unification of biology. Nat. Genet. 25, 25–29 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. 86.

    Baker, E. J., Jay, J. J., Bubier, J. A., Langston, M. A. & Chesler, E. J. GeneWeaver: a web-based system for integrative functional genomics. Nucleic Acids Res. 40, D1067–D1076 (2012).

    Article  CAS  PubMed  Google Scholar 

  87. 87.

    Rittschof, C. C. & Robinson, G. E. Genomics: moving behavioural ecology beyond the phenotypic gambit. Anim. Behav. 92, 263–270 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  88. 88.

    Biro, P. A. & Stamps, J. A. Do consistent individual differences in metabolic rate promote consistent individual differences in behavior? Trends Ecol. Evol. 25, 653–659 (2010).

    Article  PubMed  Google Scholar 

  89. 89.

    Biro, P. A. & Stamps, J. A. Are animal personality traits linked to life-history productivity? Trends Ecol. Evol. 23, 361–368 (2008).

    Article  PubMed  Google Scholar 

  90. 90.

    Sih, A. & Giudice, M. D. Linking behavioural syndromes and cognition: a behavioural ecology perspective. Phil. Trans. R. Soc. B 367, 2762–2772 (2012).

    Article  PubMed  Google Scholar 

  91. 91.

    Tieleman, B. I., Williams, J. B., Ricklefs, R. E. & Klasing, K. C. Constitutive innate immunity is a component of the pace-of-life syndrome in tropical birds. Proc. R. Soc. B 272, 1715–1720 (2005).

    Article  Google Scholar 

  92. 92.

    O’Connell, L. A. & Hofmann, H. A. The vertebrate mesolimbic reward system and social behavior network: a comparative synthesis. J. Comp. Neurol. 519, 3599–3639 (2011).

    Article  PubMed  Google Scholar 

  93. 93.

    Goodson, J. L. The vertebrate social behavior network: evolutionary themes and variations. Horm. Behav. 48, 11–22 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  94. 94.

    Newman, S. W. The medial extended amygdala in male reproductive behavior. A node in the mammalian social behavior network. Ann. NY Acad. Sci. 877, 242–257 (1999).

    Article  CAS  PubMed  Google Scholar 

  95. 95.

    Newman, M. The structure and function of complex networks. SIAM Rev. 45, 167–256 (2003).

    Article  Google Scholar 

  96. 96.

    Newman, M. E. J. & Clauset, A. Structure and inference in annotated networks. Nat. Commun. 7, 11863 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. 97.

    Wong-Riley, M. Changes in the visual system of monocularly sutured or enucleated cats demonstrable with cytochrome oxidase histochemistry. Brain Res. 171, 11–28 (1979).

    Article  CAS  PubMed  Google Scholar 

  98. 98.

    Laiho, J. E. et al. Relative sensitivity of immunohistochemistry, multiple reaction monitoring mass spectrometry, in situ hybridization and PCR to detect Coxsackievirus B1 in A549 cells. J. Clin. Virol. 77, 21–28 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. 99.

    Knight, Z. A. et al. Molecular profiling of activated neurons by phosphorylated ribosome capture. Cell 151, 1126–1137 (2012).

    Article  CAS  PubMed  Google Scholar 

  100. 100.

    Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. 101.

    Sternberg, S. H., Redding, S., Jinek, M., Greene, E. C. & Doudna, J. A. DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature 507, 62–67 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. 102.

    Shalem, O., Sanjana, N. E. & Zhang, F. High-throughput functional genomics using CRISPR-Cas9. Nat. Rev. Genet. 16, 299–311 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. 103.

    Wright, A. V., Nuñez, J. K. & Doudna, J. A. Biology and applications of CRISPR systems: harnessing nature’s toolbox for genome engineering. Cell 164, 29–44 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. 104.

    Ketting, R. F. The many faces of RNAi. Dev. Cell 20, 148–161 (2011).

    Article  CAS  PubMed  Google Scholar 

  105. 105.

    Qi, L. S. et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152, 1173–1183 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. 106.

    Liu, X. S. et al. Editing DNA methylation in the mammalian genome. Cell 167, 233–247.e17 (2009).

    Article  CAS  Google Scholar 

  107. 107.

    Katz, P. S. ‘Model organisms’ in the light of evolution. Curr. Biol. 26, R649–R650 (2016).

    Article  CAS  PubMed  Google Scholar 

  108. 108.

    Saltz, J. B. Genetic composition of social groups influences male aggressive behaviour and fitness in natural genotypes of Drosophila melanogaster. Proc. R. Soc. B 280, 20131926 (2013).

    Article  PubMed  Google Scholar 

  109. 109.

    Egan, R. J. et al. Understanding behavioral and physiological phenotypes of stress and anxiety in zebrafish. Behav. Brain Res. 205, 38–44 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. 110.

    Amdam, G. V. & Page, R. E. Jr The developmental genetics and physiology of honeybee societies. Anim. Behav. 79, 973–980 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  111. 111.

    Simola, D. F. et al. Epigenetic (re)programming of caste-specific behavior in the ant Camponotus floridanus. Science 351, aac6633 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The workshop that led to this series of papers was funded by the National Science Foundation (NSF-IOS 1623898; PI: A.M.B.), the NSF Sociogenomics Research Coordination Network and the Carl R. Woese Institute for Genomic Biology at the University of Illinois Urbana Champaign. We wish to thank other workshop participants for their feedback in the development of these ideas and comments on drafts of the manuscript.

Author information

Affiliations

Authors

Contributions

S.E.B. contributed to conception of the manuscript, drafted sections of the manuscript, contributed to the conceptualization and generation of figures and tables, edited the manuscript and facilitated the collaboration between authors. R.A.D. drafted sections of the manuscript, contributed to the conceptualization and generation of figures and tables and provided feedback. Z.D. contributed to conception of the manuscript, drafted sections of the manuscript and provided feedback. S.M.P. contributed to conception of the manuscript, drafted sections of the manuscript and provided feedback. K.v.O. contributed to conception of the manuscript and provided feedback. A.S. contributed to conception of the manuscript and provided feedback. A.M.B. contributed to the conception of the manuscript, drafted sections of the manuscript, provided feedback and edited the manuscript.

Corresponding author

Correspondence to Sarah E. Bengston.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bengston, S., Dahan, R., Donaldson, Z. et al. Genomic tools for behavioural ecologists to understand repeatable individual differences in behaviour. Nat Ecol Evol 2, 944–955 (2018). https://doi.org/10.1038/s41559-017-0411-4

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing