What genomic data can reveal about eco-evolutionary dynamics

  • Nature Ecology & Evolutionvolume 2pages915 (2018)
  • doi:10.1038/s41559-017-0385-2
  • Download Citation


Recognition that evolution operates on the same timescale as ecological processes has motivated growing interest in eco-evolutionary dynamics. Nonetheless, generating sufficient data to test predictions about eco-evolutionary dynamics has proved challenging, particularly in natural contexts. Here we argue that genomic data can be integrated into the study of eco-evolutionary dynamics in ways that deepen our understanding of the interplay between ecology and evolution. Specifically, we outline five major questions in the study of eco-evolutionary dynamics for which genomic data may provide answers. Although genomic data alone will not be sufficient to resolve these challenges, integrating genomic data can provide a more mechanistic understanding of the causes of phenotypic change, help elucidate the mechanisms driving eco-evolutionary dynamics, and lead to more accurate evolutionary predictions of eco-evolutionary dynamics in nature.

  • Subscribe to Nature Ecology & Evolution for full access:



Additional access options:

Already a subscriber?  Log in  now or  Register  for online access.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Yoshida, T., Jones, L. E., Ellner, S. P., Fussmann, G. F. & Hairston, N. G. Rapid evolution drives ecological dynamics in a predator–prey system. Nature 424, 303–306 (2003).

  2. 2.

    Hairston, N. G., Ellner, S. P., Geber, M. A., Yoshida, T. & Fox, J. A. Rapid evolution and the convergence of ecological and evolutionary time. Ecol. Lett. 8, 1114–1127 (2005).

  3. 3.

    Turcotte, M. M., Reznick, D. N. & Hare, J. D. The impact of rapid evolution on population dynamics in the wild: experimental test of eco-evolutionary dynamics. Ecol. Lett. 14, 1084–1092 (2011).

  4. 4.

    Becks, L., Ellner, S. P., Jones, L. E. & Hairston, N. G. The functional genomics of an eco-evolutionary feedback loop: linking gene expression, trait evolution, and community dynamics. Ecol. Lett. 15, 492–501 (2012).

  5. 5.

    Thompson, J. N. Rapid evolution as an ecological process. Trends Ecol. Evol. 13, 329–332 (1998).

  6. 6.

    Post, D. M. & Palkovacs, E. P. Eco-evolutionary feedbacks in community and ecosystem ecology: interactions between the ecological theatre and the evolutionary play. Phil. Trans. R. Soc. B 364, 1629–1640 (2009).

  7. 7.

    Schoener, T. W. The newest synthesis: understanding the interplay of evolutionary and ecological dynamics. Science 331, 426–429 (2011).

  8. 8.

    Hendry, A. P. Eco-Evolutionary Dynamics (Princeton Univ. Press, Princeton, 2017).

  9. 9.

    Turcotte, M. M., Reznick, D. N. & Hare, J. D. Experimental test of an eco-evolutionary dynamic feedback loop between evolution and population density in the green peach aphid. Am. Nat. 181 (Suppl. 1), S46–S57 (2013).

  10. 10.

    Matthews, B., Aebischer, T., Sullam, K. E., Lundsgaard-Hansen, B. & Seehausen, O. Experimental evidence of an eco-evolutionary feedback during adaptive divergence. Curr. Biol. 26, 483–489 (2016).

  11. 11.

    Fussmann, G. F., Loreau, M. & Abrams, P. A. Eco-evolutionary dynamics of communities and ecosystems. Funct. Ecol. 21, 465–477 (2007).

  12. 12.

    Jones, F. C. et al. The genomic basis of adaptive evolution in threespine sticklebacks. Nature 484, 55–61 (2012).

  13. 13.

    Savolainen, O., Lascoux, M. & Merilä, J. Ecological genomics of local adaptation. Nat. Rev. Genet. 14, 807–820 (2013).

  14. 14.

    Seehausen, O. et al. Genomics and the origin of species. Nat. Rev. Genet. 15, 176–192 (2014).

  15. 15.

    Thurman, T. J. & Barrett, R. D. H. The genetic consequences of selection in natural populations. Mol. Ecol. 25, 1429–1448 (2016).

  16. 16.

    Bergland, A. O., Behrman, E. L., O’Brien, K. R., Schmidt, P. S. & Petrov, D. A. Genomic evidence of rapid and stable adaptive oscillations over seasonal time scales in Drosophila. PLoS Genet. 10, e1004775 (2014).

  17. 17.

    Stapley, J. et al. Adaptation genomics: the next generation. Trends Ecol. Evol. 25, 705–712 (2010).

  18. 18.

    Hendry, A. P. Key questions in the genetics and genomics of eco-evolutionary dynamics. Heredity 111, 456–466 (2013).

  19. 19.

    Slobodkin, L. B. Growth and Regulation of Animal Populations (Holt, Rinehart, Winston, New York, 1961).

  20. 20.

    Hendry, A. P. & Kinnison, M. T. Perspective: The pace of modern life: measuring rates of contemporary microevolution. Evolution 53, 1637–1653 (1999).

  21. 21.

    Alberti, M. et al. Global urban signatures of phenotypic change in animal and plant populations. Proc. Natl Acad. Sci. USA 114, 8951–8956 (2017).

  22. 22.

    Post, D. M., Palkovacs, E. P., Schielke, E. G. & Dodson, S. I. Intraspecific variation in a predator affects community structure and cascading trophic interactions. Ecology 89, 2019–2032 (2008).

  23. 23.

    Harmon, L. J. et al. Evolutionary diversification in stickleback affects ecosystem functioning. Nature 458, 1167–1170 (2009).

  24. 24.

    Bassar, R. D. et al. Local adaptation in Trinidadian guppies alters ecosystem processes. Proc. Natl Acad. Sci. USA 107, 3616–3621 (2010).

  25. 25.

    Rudman, S. M. & Schluter, D. Ecological impacts of reverse speciation in threespine stickleback. Curr. Biol. 26, 490–495 (2016).

  26. 26.

    Endler, J. A. Natural Selection in the Wild (Princeton Univ. Press, Princeton, 1986).

  27. 27.

    Reznick, D. N. & Bryga, H. Life-history evolution in guppies (Poecilia reticulata): 1. Phenotypic and genetic changes in an introduction experiment. Evolution 41, 1370–1385 (1987).

  28. 28.

    Gienapp, P., Teplitsky, C., Alho, J. S., Mills, J. A. & Merilä, J. Climate change and evolution: disentangling environmental and genetic responses. Mol. Ecol. 17, 167–178 (2008).

  29. 29.

    Vitti, J. J., Grossman, S. R. & Sabeti, P. C. Detecting natural selection in genomic data. Annu. Rev. Genet. 47, 97–120 (2013).

  30. 30.

    Quesada, H., Ramírez, U. E. M., Rozas, J. & Aguadé, M. Large-scale adaptive hitchhiking upon high recombination in Drosophila simulans. Genetics 165, 895–900 (2003).

  31. 31.

    Ohashi, J., Naka, I. & Tsuchiya, N. The impact of natural selection on an ABCC11 SNP determining earwax type. Mol. Biol. Evol. 28, 849–857 (2011).

  32. 32.

    Gompert, Z. et al. Experimental evidence for ecological selection on genome variation in the wild. Ecol. Lett. 17, 369–379 (2014).

  33. 33.

    Kinnison, M. T., Hairston, N. G. Jr & Hendry, A. P. Cryptic eco-evolutionary dynamics. Ann. NY Acad. Sci. 1360, 120–144 (2015).

  34. 34.

    Excoffier, L., Hofer, T. & Foll, M. Detecting loci under selection in a hierarchically structured population. Heredity 103, 285–298 (2009).

  35. 35.

    Bergland, A. O., Tobler, R., Gonzalez, J., Schmidt, P. & Petrov, D. Secondary contact and local adaptation contribute to genome-wide patterns of clinal variation in Drosophila melanogaster. Mol. Ecol. 25, 1157–1174 (2016).

  36. 36.

    Nuzhdin, S. V. & Turner, T. L. Promises and limitations of hitchhiking mapping. Curr. Opin. Genet. Dev. 23, 694–699 (2013).

  37. 37.

    Franssen, S. U., Nolte, V., Tobler, R. & Schlötterer, C. Patterns of linkage disequilibrium and long range hitchhiking in evolving experimental Drosophila melanogaster populations. Mol. Biol. Evol. 32, 495–509 (2015).

  38. 38.

    Lamichhaney, S. et al. A beak size locus in Darwin’s finches facilitated character displacement during a drought. Science 352, 470–474 (2016).

  39. 39.

    Johnson, M. T. J. & Stinchcombe, J. R. An emerging synthesis between community ecology and evolutionary biology. Trends Ecol. Evol. 22, 250–257 (2007).

  40. 40.

    Rudman, S. M. et al. Adaptive genetic variation mediates bottom-up and top-down control in an aquatic ecosystem. Proc. R. Soc. B 282, 20151234 (2015).

  41. 41.

    Ellner, S. P., Geber, M. & Hairston, N. Does rapid evolution matter? Measuring the rate of contemporary evolution and its impacts on ecological dynamics. Ecol. Lett. 14, 603–614 (2011).

  42. 42.

    Govaert, L., Pantel, J. H. & De Meester, L. Eco-evolutionary partitioning metrics: assessing the importance of ecological and evolutionary contributions to population and community change. Ecol. Lett. 19, 839–853 (2016).

  43. 43.

    Stanton-Geddes, J., Yoder, J. B., Briskine, R., Young, N. D. & Tiffin, P. Estimating heritability using genomic data. Methods Ecol. Evol. 4, 1151–1158 (2013).

  44. 44.

    Bérénos, C., Ellis, P. A., Pilkington, J. G. & Pemberton, J. M. Estimating quantitative genetic parameters in wild populations: a comparison of pedigree and genomic approaches. Mol. Ecol. 23, 3434–3451 (2014).

  45. 45.

    Visscher, P. M. et al. Assumption-free estimation of heritability from genome-wide identity-by-descent sharing between full siblings. PLoS Genet. 2, e41 (2006).

  46. 46.

    Pelletier, F. et al. Eco-evolutionary dynamics in a contemporary human population. Nat. Commun. 8, 15947 (2017).

  47. 47.

    Becks, L., Ellner, S. P., Jones, L. E. & Hairston, N. G. Jr. Reduction of adaptive genetic diversity radically alters eco-evolutionary community dynamics. Ecol. Lett. 13, 989–997 (2010).

  48. 48.

    Agrawal, A. A., Hastings, A. P., Johnson, M. T. J., Maron, J. L. & Salminen, J.-P. Insect herbivores drive real-time ecological and evolutionary change in plant populations. Science 338, 113–116 (2012).

  49. 49.

    Agrawal, A. A., Johnson, M. T. J., Hastings, A. P. & Maron, J. L. A field experiment demonstrating plant life-history evolution and its eco-evolutionary feedback to seed predator populations. Am. Nat. 181 (Suppl. 1), S35–S45 (2013).

  50. 50.

    McGill, B. J., Enquist, B. J., Weiher, E. & Westoby, M. Rebuilding community ecology from functional traits. Trends Ecol. Evol. 21, 178–185 (2006).

  51. 51.

    Drysdale, R. & FlyBase Consortium FlyBase: a database for the Drosophila research community. Methods Mol. Biol. 420, 45–59 (2008).

  52. 52.

    Berardini, T. Z. et al. The Arabidopsis information resource: making and mining the ‘gold standard’ annotated reference plant genome. Genesis 53, 474–485 (2015).

  53. 53.

    Ran, F. A. et al. Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 8, 2281–2308 (2013).

  54. 54.

    Shen, L., Courtois, B., McNally, K. L., Robin, S. & Li, Z. Evaluation of near-isogenic lines of rice introgressed with QTLs for root depth through marker-aided selection. Theor. Appl. Genet. 103, 75–83 (2001).

  55. 55.

    Alonso, J. M. et al. Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301, 653–657 (2003).

  56. 56.

    Giaever, G. & Nislow, C. The yeast deletion collection: a decade of functional genomics. Genetics 197, 451–465 (2014).

  57. 57.

    Arnegard, M. E. et al. Genetics of ecological divergence during speciation. Nature 511, 307–311 (2014).

  58. 58.

    McKown, A. D. et al. Genome-wide association implicates numerous genes underlying ecological trait variation in natural populations of Populus trichocarpa. New Phytol. 203, 535–553 (2014).

  59. 59.

    McCarthy, M. I. et al. Genome-wide association studies for complex traits: consensus, uncertainty and challenges. Nat. Rev. Genet. 9, 356–369 (2008).

  60. 60.

    Whitham, T. G. et al. Community and ecosystem genetics: a consequence of the extended phenotype. Ecology 84, 559–573 (2003).

  61. 61.

    Bailey, J. K. et al. From genes to ecosystems: a synthesis of the effects of plant genetic factors across levels of organization. Phil. Trans. R. Soc. B 364, 1607–1616 (2009).

  62. 62.

    Schweitzer, J. et al. Genetically based trait in a dominant tree affects ecosystem processes. Ecol. Lett 7, 127–134 (2004).

  63. 63.

    Hanski, I. & Saccheri, I. Molecular-level variation affects population growth in a butterfly metapopulation. PLoS Biol. 4, e129 (2006).

  64. 64.

    Crutsinger, G. M. et al. Testing a ‘genes-to-ecosystems’ approach to understanding aquatic–terrestrial linkages. Mol. Ecol. 23, 5888–5903 (2014).

  65. 65.

    Mackay, T. F. C., Stone, E. A. & Ayroles, J. F. The genetics of quantitative traits: challenges and prospects. Nat. Rev. Genet. 10, 565–577 (2009).

  66. 66.

    Rockman, M. V. The QTN program and the alleles that matter for evolution: all that’s gold does not glitter. Evolution 66, 1–17 (2012).

  67. 67.

    Barbour, M. A. et al. Multiple plant traits shape the genetic basis of herbivore community assembly. Funct. Ecol. 29, 995–1006 (2015).

  68. 68.

    Farkas, T. E., Mononen, T., Comeault, A. A., Hanski, I. & Nosil, P. Evolution of camouflage drives rapid ecological change in an insect community. Curr. Biol. 23, 1835–1843 (2013).

  69. 69.

    Hiltunen, T. & Becks, L. Consumer co-evolution as an important component of the eco-evolutionary feedback. Nat. Commun. 5, 5226 (2014).

  70. 70.

    Alexander, T. J., Vonlanthen, P. & Seehausen, O. Does eutrophication-driven evolution change aquatic ecosystems? Phil. Trans. R. Soc. B 372, 20160041 (2017).

  71. 71.

    Tenaillon, O. et al. The molecular diversity of adaptive convergence. Science 335, 457–461 (2012).

  72. 72.

    Lang, G. I. et al. Pervasive genetic hitchhiking and clonal interference in forty evolving yeast populations. Nature 500, 571–574 (2013).

  73. 73.

    Lind, P. A., Farr, A. D., Rainey, P. B. & Shou, W. Experimental evolution reveals hidden diversity in evolutionary pathways. eLife 4, e07074 (2015).

  74. 74.

    Long, A., Liti, G., Luptak, A. & Tenaillon, O. Elucidating the molecular architecture of adaptation via evolve and resequence experiments. Nat. Rev. Genet. 16, 567–582 (2015).

  75. 75.

    Burke, M. K. et al. Genome-wide analysis of a long-term evolution experiment with Drosophila. Nature 467, 587–590 (2010).

  76. 76.

    Renaut, S., Owens, G. L. & Rieseberg, L. H. Shared selective pressure and local genomic landscape lead to repeatable patterns of genomic divergence in sunflowers. Mol. Ecol. 23, 311–324 (2014).

  77. 77.

    Telonis-Scott, M., Sgrò, C. M., Hoffmann, A. A. & Griffin, P. C. Cross-study comparison reveals common genomic, network, and functional signatures of desiccation resistance in Drosophila melanogaster. Mol. Biol. Evol. 33, 1053–1067 (2016).

  78. 78.

    Meier, J. I. et al. Ancient hybridization fuels rapid cichlid fish adaptive radiations. Nat. Commun. 8, 14363 (2017).

  79. 79.

    Ralph, P. L. & Coop, G. The role of standing variation in geographic convergent adaptation. Am. Nat. 186 (Suppl. 1), S5–S23 (2015).

  80. 80.

    Colosimo, P. F. et al. Widespread parallel evolution in sticklebacks by repeated fixation of ectodysplasin alleles. Science 307, 1928–1933 (2005).

  81. 81.

    Yang, J., Lee, S. H., Goddard, M. E. & Visscher, P. M. GCTA: a tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 88, 76–82 (2011).

  82. 82.

    Kruuk, L. E. B. Estimating genetic parameters in natural populations using the ‘animal model’. Phil. Trans. R. Soc. B 359, 873–890 (2004).

  83. 83.

    Wang, J. Pedigrees or markers: which are better in estimating relatedness and inbreeding coefficient? Theor. Popul. Biol. 107, 4–13 (2016).

  84. 84.

    Gienapp, P. et al. Predicting demographically sustainable rates of adaptation: can great tit breeding time keep pace with climate change? Phil. Trans. R. Soc. B 368, 20120289 (2013).

  85. 85.

    Baird, N. A. et al. Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS ONE 3, e3376 (2008).

  86. 86.

    Elshire, R. J. et al. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 6, e19379 (2011).

  87. 87.

    Andolfatto, P. et al. Multiplexed shotgun genotyping for rapid and efficient genetic mapping. Genome Res. 21, 610–617 (2011).

  88. 88.

    Bamshad, M. J. et al. Exome sequencing as a tool for Mendelian disease gene discovery. Nat. Rev. Genet. 12, 745–755 (2011).

  89. 89.

    Dolezel, J. & Bartos, J. Plant DNA flow cytometry and estimation of nuclear genome size. Ann. Bot. 95, 99–110 (2005).

  90. 90.

    Li, R. et al. The sequence and de novo assembly of the giant panda genome. Nature 463, 311–317 (2010).

  91. 91.

    Mora-Márquez, F., García-Olivares, V., Emerson, B. C. & López de Heredia, U. ddradseqtools: a software package for in silico simulation and testing of double-digest RADseq experiments. Mol. Ecol. Resour. 17, 230–246 (2017).

  92. 92.

    Schlötterer, C., Tobler, R., Kofler, R. & Nolte, V. Sequencing pools of individuals — mining genome-wide polymorphism data without big funding. Nat. Rev. Genet. 15, 749–763 (2014).

  93. 93.

    Therkildsen, N. O. & Palumbi, S. R. Practical low-coverage genomewide sequencing of hundreds of individually barcoded samples for population and evolutionary genomics in nonmodel species. Mol. Ecol. Resour. 17, 194–208 (2017).

  94. 94.

    Alex Buerkle, C. & Gompert, Z. Population genomics based on low coverage sequencing: how low should we go? Mol. Ecol. 22, 3028–3035 (2013).

  95. 95.

    Lowry, D. B. et al. Breaking RAD: an evaluation of the utility of restriction site-associated DNA sequencing for genome scans of adaptation. Mol. Ecol. Resour. 17, 142–152 (2017).

  96. 96.

    Mostovoy, Y. et al. A hybrid approach for de novo human genome sequence assembly and phasing. Nat. Methods 13, 587–590 (2016).

  97. 97.

    Dudchenko, O. et al. De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds. Science 356, 92–95 (2017).

  98. 98.

    Catchen, J., Hohenlohe, P. A., Bassham, S., Amores, A. & Cresko, W. A. Stacks: an analysis tool set for population genomics. Mol. Ecol. 22, 3124–3140 (2013).

  99. 99.

    Eaton, D. A. R. PyRAD: assembly of de novo RADseq loci for phylogenetic analyses. Bioinformatics 30, 1844–1849 (2014).

  100. 100.

    Puritz, J. B., Hollenbeck, C. M. & Gold, J. R. dDocent: a RADseq, variant-calling pipeline designed for population genomics of non-model organisms. PeerJ 2, e431 (2014).

Download references


The paper was conceived during a Monte Verita conference on ‘The Genomic Basis of Eco-Evolutionary Change’ organized by the Centre for Adaptation to a Changing Environment (ACE) at ETH Zürich. We thank the Congressi Stefano Franscini and ETH Zürich for funding and supporting the meeting.

Author information


  1. Department of Biology, University of Pennsylvania, Philadelphia, PA, USA

    • Seth M. Rudman
    •  & Paul S. Schmidt
  2. Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland

    • Matthew A. Barbour
    •  & Frederic Guillaume
  3. Adaptation to a Changing Environment, ETH Zürich, Zurich, Switzerland

    • Katalin Csilléry
    •  & Martin M. Turcotte
  4. Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands

    • Phillip Gienapp
  5. Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA

    • Nelson G. Hairston Jr
  6. Redpath Museum and Department of Biology, McGill University, Montreal, Quebec, Canada

    • Andrew P. Hendry
  7. Department of Biology, Pennsylvania State University, University Park, PA, USA

    • Jesse R. Lasky
  8. Department of Physics, University of Gothenburg, Gothenburg, Sweden

    • Marina Rafajlović
  9. Centre for Marine Evolutionary Biology, University of Gothenburg, Tjärnö, Strömstad, Sweden

    • Marina Rafajlović
  10. Department of Aquatic Ecology/ETH-Zurich, Eawag, Institute of Integrative Biology, Duebendorf, Switzerland

    • Katja Räsänen
  11. Department of Fish Ecology and Evolution, Eawag, Center for Ecology, Evolution and Biogeochemistry, Kastanienbaum, Switzerland

    • Ole Seehausen
  12. Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland

    • Ole Seehausen
  13. Department of Natural Resources, Cornell University, Ithaca, NY, USA

    • Nina O. Therkildsen
  14. Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA

    • Martin M. Turcotte
  15. Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland

    • Jonathan M. Levine


  1. Search for Seth M. Rudman in:

  2. Search for Matthew A. Barbour in:

  3. Search for Katalin Csilléry in:

  4. Search for Phillip Gienapp in:

  5. Search for Frederic Guillaume in:

  6. Search for Nelson G. Hairston Jr in:

  7. Search for Andrew P. Hendry in:

  8. Search for Jesse R. Lasky in:

  9. Search for Marina Rafajlović in:

  10. Search for Katja Räsänen in:

  11. Search for Paul S. Schmidt in:

  12. Search for Ole Seehausen in:

  13. Search for Nina O. Therkildsen in:

  14. Search for Martin M. Turcotte in:

  15. Search for Jonathan M. Levine in:


S.M.R. assembled the first draft of the manuscript based on contributions from all authors. All authors provided revisions.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Seth M. Rudman.