The distributions of amphibians, birds and mammals have underpinned global and local conservation priorities, and have been fundamental to our understanding of the determinants of global biodiversity. In contrast, the global distributions of reptiles, representing a third of terrestrial vertebrate diversity, have been unavailable. This prevented the incorporation of reptiles into conservation planning and biased our understanding of the underlying processes governing global vertebrate biodiversity. Here, we present and analyse the global distribution of 10,064 reptile species (99% of extant terrestrial species). We show that richness patterns of the other three tetrapod classes are good spatial surrogates for species richness of all reptiles combined and of snakes, but characterize diversity patterns of lizards and turtles poorly. Hotspots of total and endemic lizard richness overlap very little with those of other taxa. Moreover, existing protected areas, sites of biodiversity significance and global conservation schemes represent birds and mammals better than reptiles. We show that additional conservation actions are needed to effectively protect reptiles, particularly lizards and turtles. Adding reptile knowledge to a global complementarity conservation priority scheme identifies many locations that consequently become important. Notably, investing resources in some of the world’s arid, grassland and savannah habitats might be necessary to represent all terrestrial vertebrates efficiently.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from $8.99

All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Change history

  • Correction 05 December 2017

    In the version of this Article originally published, grant no. 2015/20215-7 for C.N. was omitted from the Acknowledgements section. This has now been corrected in all versions of the Article.

  • Correction 18 October 2017

    In this Article originally published, owing to a technical error, the author ‘Laurent Chirio’ was mistakenly designated as a corresponding author in the HTML version, the PDF was correct. This error has now been corrected in the HTML version. Further, in Supplementary Table 3, the authors misspelt the surname of ‘Danny Meirte’; this file has now been replaced.


  1. 1.

    Grenyer, R. et al. Global distribution and conservation of rare and threatened vertebrates. Nature 444, 93–96 (2006).

  2. 2.

    Orme, C. D. L. et al. Global hotspots of species richness are not congruent with endemism or threat. Nature 436, 1016–1019 (2005).

  3. 3.

    Stuart, S. N. et al. Status and trends of amphibian declines and extinctions worldwide. Science 306, 1783–1786 (2004).

  4. 4.

    Brooks, T. M. et al. Global biodiversity conservation priorities. Science 313, 58–61 (2006).

  5. 5.

    Kremen, C. et al. Aligning conservation priorities across taxa in Madagascar with high-resolution planning tools. Science 320, 222–226 (2008).

  6. 6.

    Wilson, K. A., McBride, M. F., Bode, M. & Possingham, H. P. Prioritizing global conservation efforts. Nature 440, 337–340 (2006).

  7. 7.

    Holt, B. G. et al. An update of Wallace’s zoogeographic regions of the world. Science 339, 74–78 (2013).

  8. 8.

    Schipper, J. et al. The status of the world’s land and marine mammals: diversity, threat, and knowledge. Science 322, 225–230 (2008).

  9. 9.

    Bates, S. T. et al. Examining the global distribution of dominant archaeal populations in soil. ISME J. 5, 908–917 (2011).

  10. 10.

    Morueta-Holme, N. et al. Habitat area and climate stability determine geographical variation in plant species range sizes. Ecol. Lett. 16, 1446–1454 (2013).

  11. 11.

    Stuart-Smith, R. D. et al. Integrating abundance and functional traits reveals new global hotspots of fish diversity. Nature 501, 539–542 (2013).

  12. 12.

    Tittensor, D. P. et al. Global patterns and predictors of marine biodiversity across taxa. Nature 466, 1098–1101 (2010).

  13. 13.

    Mittermeier, R. A. et al. Hotspots Revisited: Earth’s Biologically Richest and Most Endangered Ecoregions (CEMEX, Mexico City, 2004).

  14. 14.

    Olson, D. M. & Dinerstein, E. The Global 200: a representation approach to conserving the Earth’s most biologically valuable ecoregions. Conserv. Biol. 12, 502–515 (1998).

  15. 15.

    Important Bird and Biodiversity Area (IBA) Digital Boundaries. Version 2015 2 (BirdLife Intranational, Cambridge, 2015).

  16. 16.

    Jetz, W. & Rahbek, C. Geographic range size and determinants of avian species richness. Science 297, 1548–1551 (2002).

  17. 17.

    Lennon, J. J., Koleff, P., Greenwood, J. J. D. & Gaston, K. J. Contribution of rarity and commonness to patterns of species richness. Ecol. Lett. 7, 81–87 (2004).

  18. 18.

    Joppa, L. N., Visconti, P., Jenkins, C. N. & Pimm, S. L. Achieving the Convention on Biological Diversity’s goals for plant conservation. Science 341, 1100–1103 (2013).

  19. 19.

    Naidoo, R. & Iwamura, T. Global-scale mapping of economic benefits from agricultural lands: implications for conservation priorities. Biol. Conserv. 140, 40–49 (2007).

  20. 20.

    Moilanen, A. et al. Prioritizing multiple-use landscapes for conservation: methods for large multi-species planning problems. Proc. R. Soc. Lond. B 272, 1885–1891 (2005).

  21. 21.

    Pianka, E. R. in Lacertids of the Mediterranean Region (eds Valakos, E. D., Böhme, W., Pérez-Mellado, V. & Maragou, P.) 121–154 (Hellenic Zoological Society, University of Athens, Athens, 1993).

  22. 22.

    Lewin, A. et al. Patterns of species richness, endemism and environmental gradients of African reptiles. J. Biogeogr. 43, 2380–2390 (2016).

  23. 23.

    Powney, G. D., Grenyer, R., Orme, C. D. L., Owens, I. P. F. & Meiri, S. Hot, dry and different: Australian lizard richness is unlike that of mammals, amphibians and birds. Glob. Ecol. Biogeogr. 19, 386–396 (2010).

  24. 24.

    Böhm, M. et al. The conservation status of the world’s reptiles. Biol. Conserv. 157, 372–385 (2013).

  25. 25.

    Meiri, S. & Chapple, D. G. Biases in the current knowledge of threat status in lizards, and bridging the ‘assessment gap’. Biol. Conserv. 2014A, 6–15 (2016).

  26. 26.

    Roll, U. et al. Using Wikipedia page views to explore the cultural importance of global reptiles. Biol. Conserv. 204A, 42–50 (2016).

  27. 27.

    Bode, M. et al. Cost-effective global conservation spending is robust to taxonomic group. Proc. Natl Acad. Sci. USA 105, 6498–6501 (2008).

  28. 28.

    Hawkins, B. A. et al. Energy, water, and broad-scale geographic patterns of species richness. Ecology 84, 3105–3117 (2003).

  29. 29.

    Uetz, P. & Hošek, J. The Reptile Database (2015); http://www.reptile-database.org/

  30. 30.

    Pouzols, F. M. et al. Global protected area expansion is compromised by projected land-use and parochialism. Nature 516, 383–386 (2014).

  31. 31.

    Scott, J. M. et al. Gap analysis: a geographic approach to protection of biological diversity. Wildlife Monogr. 123, 3–41 (1993).

  32. 32.

    Maldonado, C. et al. Estimating species diversity and distribution in the era of Big Data: to what extent can we trust public databases? Glob. Ecol. Biogeogr. 24, 973–984 (2015).

  33. 33.

    Maréchaux, I., Rodrigues, A. S. L. & Charpentier, A. The value of coarse species range maps to inform local biodiversity conservation in a global context. Ecography https://doi.org/10.1111/ecog.02598 (2016).

  34. 34.

    Cantú-Salazar, L. & Gaston, K. J. Species richness and representation in protected areas of the Western Hemisphere: discrepancies between checklists and range maps. Divers. Distrib. 19, 782–793 (2013).

  35. 35.

    Anselin, L. Local indicators of spatial association — LISA. Geogr. Anal. 27, 93–115 (1995).

Download references


We thank T. Burbidge, T. Dowe, S. Huang, S. Khela, H.-Y. Lee, K. Tamar, J. Usherwood, M. Hopkins and S. Halle for help in digitizing reptile ranges. We thank librarians and colleagues for help in obtaining relevant literature, G. Bunting and M. Balman for providing IBA polygons and bird species distribution maps from BirdLife International, as well as S. Butchart for insightful comments. A.B. thanks the Gerald M. Lemole endowed Chair funds. G.R.C. thanks CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Conselho Nacional de Desenvolvimento Científico e Tecnológico – CNPq and Fundação de Apoio à Pesquisa do Distrito Federal – FAPDF for financial support. I.D. was supported by a Niche Research Grant Scheme, NRGS/1087/2–13(01). C.N. and M.M. were supported by São Paulo Research Foundation (FAPESP no. 2011/50206-9, no. 2012/19858-2 and no. 2015/20215-7 to C.N.). M.M. acknowledges a research fellowship from CNPq. O.T.C. acknowledges support from SENESCYT. R.G. acknowledges the John Fell Fund of the University of Oxford for support. A.A. and S.M. acknowledge support from a BSF grant no. 2012143.

Author information

Author notes

    • Uri Roll

    Present address: Mitrani Department of Desert Ecology, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University, Midreshet Ben-Gurion, 8499000, Israel

  1. Laurent Chirio is unaffiliated:

  2. U.R., A.F. and M.N. contributed equally to this work.

  3. S.M. and R.G. jointly supervised this work.


  1. School of Geography and the Environment, University of Oxford, Oxford, OX1 3QY, UK

    • Uri Roll
    •  & Richard Grenyer
  2. Department of Zoology, Tel-Aviv University, Tel-Aviv, 6997801, Israel

    • Anat Feldman
    • , Maria Novosolov
    • , Yuval Itescu
    • , Amir Lewin
    • , Erez Maza
    • , Oliver J. S. Tallowin
    • , Enav Vidan
    •  & Shai Meiri
  3. Hawaii Biological Survey, 4 Bishop Museum, Honolulu, HI, 96817, USA

    • Allen Allison
  4. Department of Biology, Villanova University, Villanova, PA, 19085, USA

    • Aaron M. Bauer
    •  & Philipp Wagner
  5. Department of Life Sciences, Imperial College London, Silwood Park Campus, Silwood Park, Ascot, Berkshire, SL5 7PY, UK

    • Rodolphe Bernard
    •  & C. David L. Orme
  6. Institute of Zoology, Zoological Society of London, London, NW1 4RY, UK

    • Monika Böhm
  7. School of Basic Sciences, Physiology Sciences Department, Universidad del Valle, Cali, 760043, Colombia

    • Fernando Castro-Herrera
  8. Centre for Biodiversity & Environment Research, University College London, London, WC1E 6BT, UK

    • Ben Collen
  9. Departamento de Zoologia, Universidade de Brasília, Brasília, Distrito Federal, 70910-900, Brazil

    • Guarino R. Colli
  10. Department of Genetics and Developmental Biology, The Rappaport Family Institute for Research in the Medical Sciences, Faculty of Medicine, Technion – Israel Institute of Technology, Haifa, 31096, Israel

    • Lital Dabool
  11. Institute of Biodiversity and Environmental Conservation, Universiti Malaysia Sarawak, Kota Samarahan, Sarawak, 94300, Malaysia

    • Indraneil Das
  12. Department of Biology, University of Central Florida, Orlando, FL, 32816, USA

    • Tiffany M. Doan
  13. Department of Biology, La Sierra University, Riverside, CA, 92505, USA

    • Lee L. Grismer
  14. Museu Paraense Emílio Goeldi/CZO, Caixa Postal 399, Belém, Pará, 66017–970, Brazil

    • Marinus Hoogmoed
  15. Department of Ecology and Evolutionary Biology, University of Michigan, Ann-Arbor, MI, 48109-1048, USA

    • Fred Kraus
  16. Mosaic (Environment, Health, Data, Technology), Yaoundé, Cameroon

    • Matthew LeBreton
  17. Departamento de Ecologia, Instituto de Biociências, Universidade de São Paulo, Sao Paulo, 05508-090, Brazil

    • Marcio Martins
    •  & Cristiano de C. Nogueira
  18. Royal Museum for Central Africa, Leuvensesteenweg 13, Tervuren, 3080, Belgium

    • Danny Meirte
  19. Joint Experimental Molecular Unit, Royal Belgian Institute of Natural Sciences, Brussels, B-1000, Belgium

    • Zoltán T. Nagy
  20. Département des Vertébrés Récents, Royal Belgian Institute of Natural Sciences, Brussels, B-1000, Belgium

    • Olivier S. G. Pauwels
  21. School of Life Sciences, Joseph Banks Laboratories, University of Lincoln, Brayford Campus, Lincoln, LN6 7DL, UK

    • Daniel Pincheira-Donoso
  22. NERC Centre for Ecology and Hydrology, Maclean Building, Crowmarch Gifford, Wallingford, OX10 8BB, UK

    • Gary D. Powney
  23. Museo Civico di Storia Naturale, Carmagnola, Turin, I-10022, Italy

    • Roberto Sindaco
  24. Museo de Zoología, Escuela de Ciencias Biológicas, Pontificia Universidad Católica del Ecuador, Apartado 17-01-2184, Quito, 170525, Ecuador

    • Omar Torres-Carvajal
  25. Institut de Recherche pour le Développement, Laboratoire de Paludologie et Zoologie Médicale, UMR MIVEGEC, Dakar, Senegal

    • Jean-François Trape
  26. Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, VA, 23284, USA

    • Peter Uetz
  27. Zoologische Staatssammlung München, München, D-81247, Germany

    • Philipp Wagner
  28. Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China

    • Yuezhao Wang
  29. Steinhardt Museum of Natural History, Tel Aviv University, Tel-Aviv, 6997801, Israel

    • Shai Meiri


  1. Search for Uri Roll in:

  2. Search for Anat Feldman in:

  3. Search for Maria Novosolov in:

  4. Search for Allen Allison in:

  5. Search for Aaron M. Bauer in:

  6. Search for Rodolphe Bernard in:

  7. Search for Monika Böhm in:

  8. Search for Fernando Castro-Herrera in:

  9. Search for Laurent Chirio in:

  10. Search for Ben Collen in:

  11. Search for Guarino R. Colli in:

  12. Search for Lital Dabool in:

  13. Search for Indraneil Das in:

  14. Search for Tiffany M. Doan in:

  15. Search for Lee L. Grismer in:

  16. Search for Marinus Hoogmoed in:

  17. Search for Yuval Itescu in:

  18. Search for Fred Kraus in:

  19. Search for Matthew LeBreton in:

  20. Search for Amir Lewin in:

  21. Search for Marcio Martins in:

  22. Search for Erez Maza in:

  23. Search for Danny Meirte in:

  24. Search for Zoltán T. Nagy in:

  25. Search for Cristiano de C. Nogueira in:

  26. Search for Olivier S. G. Pauwels in:

  27. Search for Daniel Pincheira-Donoso in:

  28. Search for Gary D. Powney in:

  29. Search for Roberto Sindaco in:

  30. Search for Oliver J. S. Tallowin in:

  31. Search for Omar Torres-Carvajal in:

  32. Search for Jean-François Trape in:

  33. Search for Enav Vidan in:

  34. Search for Peter Uetz in:

  35. Search for Philipp Wagner in:

  36. Search for Yuezhao Wang in:

  37. Search for C. David L. Orme in:

  38. Search for Richard Grenyer in:

  39. Search for Shai Meiri in:


A.M.B., R.G., S.M., U.R. conceived the study. R.G., C.D.L.O., U.R. designed the analyses. U.R. conducted the analyses. A.F., S.M., M.N., U.R. complied, designed and curated the dataset. R.G., S.M., U.R. wrote the paper. A.A., A.M.B., M.B., R.B., B.C., F.C.H., L.C., G.R.C., L.D., I.D., T.M.D., A.F., L.L.G., M.H., Y.I., F.K., A.L., M.L., E.M., D.M., M.M., S.M., C.C.N., M.N., Z.T.N., G.P., O.S.G.P., D.P.D., U.R., R.S., O.J.S.T., O.T.C., J.F.T., E.V., P.U., P.W., Y.W. provided, collated and verified underlying data. All authors read and commented on the manuscript.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Shai Meiri.

Electronic supplementary material

  1. Supplementary Information

    Supplementary Methods, Supplementary Tables 1–4, Supplementary Figures 1–8, Supplementary References and descriptions of Supplementary Tables 3–4

  2. Supplementary Table 3

    Full list of sources per species and details for each source.

  3. Supplementary Table 4

    List of species found in the March 2015 version of the Reptile Database (http://www.reptile-database.org/data/reptile_checklist_2015_03.xls.zip) for which we did not present or analyse distributions.

About this article

Publication history