Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Diversity-dependent temporal divergence of ecosystem functioning in experimental ecosystems

An Author Correction to this article was published on 08 August 2019

This article has been updated

Abstract

The effects of biodiversity on ecosystem functioning generally increase over time, but the underlying processes remain unclear. Using 26 long-term grassland and forest experimental ecosystems, we demonstrate that biodiversity–ecosystem functioning relationships strengthen mainly by greater increases in functioning in high-diversity communities in grasslands and forests. In grasslands, biodiversity effects also strengthen due to decreases in functioning in low-diversity communities. Contrasting trends across grasslands are associated with differences in soil characteristics.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Ecosystem functioning in grassland and forest experimental ecosystems.
Fig. 2: Influence of soil characteristics on temporal divergence in grasslands.

Change history

  • 08 August 2019

    An amendment to this paper has been published and can be accessed via a link at the top of the paper.

References

  1. 1.

    Isbell, F. et al. Nature 546, 65–72 (2017).

    CAS  Article  Google Scholar 

  2. 2.

    Tilman, D., Isbell, F. & Cowles, J. M. Annu. Rev. Ecol. Evol. Syst. 45, 471–493 (2014).

    Article  Google Scholar 

  3. 3.

    Hooper, D. U. et al. Ecol. Monogr. 75, 3–35 (2005).

    Article  Google Scholar 

  4. 4.

    Balvanera, P. et al. Ecol. Lett. 9, 1146–1156 (2006).

    Article  Google Scholar 

  5. 5.

    Reich, P. B. et al. Science 336, 589–592 (2012).

    CAS  Article  Google Scholar 

  6. 6.

    Cardinale, B. J. et al. Proc. Natl Acad. Sci. USA 104, 18123–18128 (2007).

    CAS  Article  Google Scholar 

  7. 7.

    Ewel, J. J., Celis, G. & Schreeg, L. Biotropica 47, 162–171 (2015).

    Article  Google Scholar 

  8. 8.

    Flombaum, P. & Sala, O. E. Proc. Natl Acad. Sci. USA 105, 6087–6090 (2008).

    CAS  Article  Google Scholar 

  9. 9.

    Eisenhauer, N. et al. J. Veg. Sci. 27, 1061–1070 (2016).

    Article  Google Scholar 

  10. 10.

    Grace, J. B. et al. Nature 529, 390–393 (2016).

    CAS  Article  Google Scholar 

  11. 11.

    Hautier, Y. et al. Nature 508, 521–525 (2014).

    CAS  Article  Google Scholar 

  12. 12.

    Marquard, E. et al. PLoS ONE 8, e75599 (2013).

    CAS  Article  Google Scholar 

  13. 13.

    Fridley, J. D. Oecologia 132, 271–277 (2002).

    Article  Google Scholar 

  14. 14.

    Boyden, S., Binkley, D. & Senock, R. Ecology 86, 992–1001 (2005).

    Article  Google Scholar 

  15. 15.

    Forrester, D. I. & Bauhus, J. Curr. Forest. Rep. 2, 45–61 (2016).

    Article  Google Scholar 

  16. 16.

    Newbold, T. et al. Nature 520, 45–50 (2015).

    CAS  Article  Google Scholar 

  17. 17.

    Urban, M. C. Science 348, 571–573 (2015).

    CAS  Article  Google Scholar 

  18. 18.

    Paquette, A. & Messier, C. Front. Ecol. Environ. 8, 27–34 (2010).

    Article  Google Scholar 

  19. 19.

    Tilman, D. et al. Science 292, 281–284 (2001).

    CAS  Article  Google Scholar 

  20. 20.

    Fargione, J. et al. Proc. R. Soc. B 274, 871–876 (2007).

    Article  Google Scholar 

  21. 21.

    De Deyn, G. B. Oikos 126, 497–507 (2017).

    Article  Google Scholar 

  22. 22.

    Craven, D. et al. Phil. Trans. R. Soc. B 371, 1–8 (2016).

    Article  Google Scholar 

  23. 23.

    Eriksson, O. & Ehrlén, J. Oecologia 91, 360–364 (1992).

    CAS  Article  Google Scholar 

  24. 24.

    Marquard, E. et al. J. Ecol. 97, 696–704 (2009).

    Article  Google Scholar 

  25. 25.

    Williams, L. J., Paquette, A., Cavender-Bares, J., Messier, C. & Reich, P. B. Nat. Ecol. Evol. 1, 1–7 (2017).

    Article  Google Scholar 

  26. 26.

    Binkley, D., Senock, R., Bird, S. & Cole, T. G. Forest Ecol. Manag. 182, 93–102 (2003).

    Article  Google Scholar 

  27. 27.

    Ewel, J. J. & Mazzarino, M. J. Proc. Natl Acad. Sci. USA 105, 18836–18841 (2008).

    CAS  Article  Google Scholar 

  28. 28.

    Potvin, C. & Dutilleul, P. Ecology 90, 321–327 (2009).

    Article  Google Scholar 

  29. 29.

    R Development Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2015).

  30. 30.

    Hengl, T. et al. PLoS ONE 12, e0169748 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the German Research Foundation through the Emmy Noether research group (Ei 862/2), a European Research Council starting grant (grant agreement 677232) provided to N.E. and financial support from the German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig (FZT 118). The Jena Experiment is funded by the Deutsche Forschungsgemeinschaft (FOR 1451). Support for BioCON came from the US National Science Foundation (NSF) Long-Term Ecological Research (DEB-9411972, DEB-0080382, DEB-0620652 and DEB-1234162), Biocomplexity Coupled Biogeochemical Cycles (DEB-0322057), Long-Term Research in Environmental Biology (DEB-0716587, DEB-1242531) and Ecosystem Sciences (NSF DEB- 1120064) Programs; as well as the US Department of Energy Programs for Ecosystem Research (DE-FG02-96ER62291) and National Institute for Climatic Change Research (DE-FC02-06ER64158). N.R.G.-R. thanks D. Binkley, A. Weigelt and E. De Luca for contributing data, S. Bilodeau-Gauthier for support with the database and P. Keil for help with data analysis.

Author information

Affiliations

Authors

Contributions

N.E. conceived the idea. N.E. and N.R.G.-R. developed the idea. A.H., B.W., C.Palmborg, C.Potvin, C.R., D.I.F., D.P., D.T., F.M., H.A., H.E.E., J.J.E., J.J., J.K., J.A.P., J.v.R. and P.B.R. contributed experimental data. N.R.G.-R. assembled the data. N.R.G.-R. and D.C. analysed the data with input from F.I., J.K. and A.H. N.R.G.-R. wrote the paper with substantial input from all authors.

Corresponding author

Correspondence to Nathaly R. Guerrero-Ramírez.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Information

Supplementary figures, tables, methods, references and code.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Guerrero-Ramírez, N.R., Craven, D., Reich, P.B. et al. Diversity-dependent temporal divergence of ecosystem functioning in experimental ecosystems. Nat Ecol Evol 1, 1639–1642 (2017). https://doi.org/10.1038/s41559-017-0325-1

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing