Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Deep faunistic turnovers preceded the rise of dinosaurs in southwestern Pangaea


The Triassic period documents the origin and diversification of modern amniote lineages and the Late Triassic fossil record of South America has been crucial to shed light on these early evolutionary histories. However, the faunistic changes that led to the establishment of Late Triassic ecosystems are largely ignored because of the global scarcity of fossils from assemblages a few million years older. Here we contribute to fill this gap with the description of a new tetrapod assemblage from the lowermost levels of the Chañares Formation (uppermost Middle–lower Late Triassic epochs) of Argentina, which is older than the other vertebrate assemblages of the same basin. The new assemblage is composed of therapsids, rhynchosaurids and archosaurs, and clearly differs from that of the immediately overlying and well-known historical Chañares vertebrate assemblage. The new tetrapod association is part of a phase of relatively rapidly changing vertebrate assemblage compositions, in a time span shorter than 6 million years, before the diversification of dinosaurs and other common Late Triassic tetrapods in southwestern Pangaea.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Chronostratigraphy and vertebrate assemblage zones of the Chañares Formation.
Fig. 2: Skeletal anatomy of the erpetosuchid pseudosuchian Tarjadia ruthae.
Fig. 3: Other tetrapods from the Tarjadia Assemblage Zone and phylogenetic relationships of the archosauromorphs from the Chañares Formation.


  1. Bakker, R. T. in Patterns of Evolution as illustrated by the Fossil Record (ed. Hallan, A.) 439–468 (Elsevier, Amsterdam, 1977).

  2. Benton, M. J., Tverdokhlebov, V. P. & Surkov, M. V. Ecosystem remodelling among vertebrates at the Permian–Triassic boundary in Russia. Nature 432, 97–100 (2004).

    CAS  Article  PubMed  Google Scholar 

  3. Nesbitt, S. J. The early evolution of archosaurs: relationships and the origin of major clades. Bull. Am. Mus. Nat. Hist. 352, 1–292 (2011).

    Article  Google Scholar 

  4. Ezcurra, M. D. The phylogenetic relationships of basal archosauromorphs, with an emphasis on the systematics of proterosuchian archosauriforms. PeerJ 4, e1778 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Martinelli, A. G. & Bento Soares, M. in Historia Evolutiva y Paleobiogeográfica de los Vertebrados de América del Sur (eds. Agnolín, F. L., Lio, G. L., Brissón Egli, F., Chimento, N. & Novas, F. E.) 183–197 (Contribuciones del MACN 6, 2016).

  6. Liu, J. & Olsen, P. The phylogenetic relationships of Eucynodontia (Amniota: Synapsida). J. Mamm. Evol. 17, 151–176 (2010).

    Article  Google Scholar 

  7. Ruta, M., Botha-Brink, J., Mitchell, S. A. & Benton, M. J. The radiation of cynodonts and the ground plan of mammalian morphological diversity. Proc. R. Soc. B 280, 20131865 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Brusatte, S. L. et al. The origin and early radiation of dinosaurs. Earth Sci. Rev. 101, 68–100 (2010).

    Article  Google Scholar 

  9. Langer, M. C., Ezcurra, M. D., Bittencourt, J. & Novas, F. E. The origin and early evolution of dinosaurs. Biol. Rev. Camb. Philos. Soc. 85, 55–110 (2010).

    Article  PubMed  Google Scholar 

  10. Abdala, F. & Ribeiro, A. M. Distribution and diversity patterns of Triassic cynodonts (Therapsida, Cynodontia) in Gondwana. Palaeogeogr. Palaeoclimatol. Palaeoecol. 286, 202–217 (2010).

    Article  Google Scholar 

  11. Bonaparte, J. F. Faunal replacement in the Triassic of South America. J. Vertebr. Paleontol. 2, 362–371 (1982).

    Article  Google Scholar 

  12. Benton, M. J. Dinosaur success in the Triassic: a non-competitive ecological model. Q. Rev. Biol. 58, 29–55 (1983).

    Article  Google Scholar 

  13. Romer, A. S. The Chãnares (Argentina) Triassic reptile fauna: I. Introduction. Breviora 247, 1–14 (1966).

    Google Scholar 

  14. Romer, A. S. The Chañares (Argentina) Triassic reptile fauna: XX. Summary. Breviora 413, 1–20 (1973).

    Google Scholar 

  15. Rogers, R. R. et al. Paleoenvironment and taphonomy of the Chañares Formation tetrapod assemblage (Middle Triassic), northwestern Argentina: spectacular preservation in volcanogenic concretions. Palaios 16, 461–481 (2001).

    Article  Google Scholar 

  16. Marsicano, C. A. et al. The precise temporal calibration of dinosaur origins. Proc. Natl Acad. Sci. USA 113, 509–513 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Fiorelli, L. E. et al. The oldest known communal latrines provide evidence of gregarism in Triassic megaherbivores. Sci. Rep. 3, 3348 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Crompton, A. W. & Parrington, F. R. On some Triassic cynodonts from Tanganyika. Proc. Zool. Soc. Lond. 125, 617–669 (1955).

    Article  Google Scholar 

  19. Martinelli, A. G. et al. The African cynodont Aleodon (Cynodontia, Probainognathia) in the Triassic of southern Brazil and its biostratigraphic significance. PLoS ONE 12, e0177948 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Ezcurra, M. D. et al. The oldest rhynchosaur from Argentina: a Middle Triassic rhynchosaurid from the Chañares Formation (Ischigualasto–Villa Unión Basin, La Rioja Province). Paläontol. Z. 88, 453–460 (2014).

    Article  Google Scholar 

  21. Arcucci, A. B. & Marsicano, C. A. A distinctive new archosaur from the Middle Triassic (Los Chañares Formation) of Argentina. J. Vertebr. Paleontol. 18, 228–232 (1998).

    Article  Google Scholar 

  22. Desojo, J. B., Ezcurra, M. D. & Schultz, C. L. An unusual new archosauriform from the Middle–Late Triassic of southern Brazil and the monophyly of Doswelliidae. Zool. J. Linn. Soc. 161, 839–871 (2011).

    Article  Google Scholar 

  23. Sereno, P. C. Basal archosaurs: phylogenetic relationships and functional implications. Mem. Soc. Vertebr. Paleontol. 2, 1–53 (1991).

    Article  Google Scholar 

  24. Mancuso, A. C., Gaetano, L. C., Leardi, J. M., Abdala, F. & Arcucci, A. B. The Chañares Formation: a window to a Middle Triassic tetrapod community. Lethaia 47, 244–265 (2014).

    Article  Google Scholar 

  25. Alroy, J. Geographical, environmental and intrinsic biotic controls on Phanerozoic marine diversification. Palaeontology 53, 1211–1235 (2010).

    Article  Google Scholar 

  26. Schultz, C. L., Scherer, C. M. S. & Barberena, M. C. Biostratigraphy of southern Brazilian Middle–Upper Triassic. Rev. Bras. Geociênc. 30, 495–498 (2000).

    Google Scholar 

  27. Langer, M. C., Ribeiro, A. M., Schultz, C. L. & Ferigolo, J. The continental tetrapod-bearing Triassic of South Brazil. Bull. New Mexico Mus. Nat. Hist. Sci. 41, 201–218 (2007).

    Google Scholar 

  28. Schultz, C. L., Langer, M. C. & Montefeltro, F. C. A new rhynchosaur from south Brazil (Santa Maria Formation) and rhynchosaur diversity patterns across the Middle–Late Triassic boundary. Paläontol. Z. 90, 593–609 (2016).

    Article  Google Scholar 

  29. Abdala, F. & Sá-Teixeira, A. M. A traversodontid cynodont of African affinity in the South American Triassic. Palaeontol. Afr. 40, 11–22 (2004).

    Google Scholar 

  30. Nesbitt, S. J. et al. Ecologically distinct dinosaurian sister-group shows early diversification of Ornithodira. Nature 464, 95–98 (2010).

    CAS  Article  PubMed  Google Scholar 

  31. Raath, M. A. Earliest evidence of dinosaurs from central Gondwana. Mem. Queensl. Mus. 39, 703–709 (1996).

    Google Scholar 

  32. Raath, M. A., Oesterlen, P. M. & Kitching, J. W. First record of Triassic Rhynchosauria (Reptilia: Diapsida) from the Lower Zambezi Valley, Zimbabwe. Palaeontol. Afr. 29, 1–10 (1992).

    Google Scholar 

  33. Langer, M. C. Studies on continental Late Triassic tetrapod biochronology. II. The Ischigualastian and a Carnian global correlation. J. S. Am. Earth Sci. 19, 219–239 (2005).

    Article  Google Scholar 

  34. Nesbitt, S. J. et al. The earliest bird-line archosaurs and the assembly of the dinosaur body plan. Nature 544, 484–487 (2017).

    CAS  Article  PubMed  Google Scholar 

  35. Stocker, M. R., Zhao, L. J., Nesbitt, S. J., Wu, X. C. & Li, C. A short-snouted, Middle Triassic phytosaur and its implications for the morphological evolution and biogeography of Phytosauria. Sci. Rep. 7, 46028 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. Goloboff, P. A., Farris, J. S. & Nixon, K. C. TNT: a free program for phylogenetic analysis. Cladistics 24, 774–786 (2008).

    Article  Google Scholar 

  37. Goloboff, P. A. & Catalano, S. A. TNT version 1.5, including a full implementation of phylogenetic morphometrics. Cladistics 32, 221–238 (2016).

    Article  Google Scholar 

  38. Sato, K., Santosh, M., Tsunogae, T., Chetty, T. R. K. & Hirata, T. Subduction accretion–collision history along the Gondwana suture in southern India: a laser ablation ICP-MS study of zircon chronology. J. Asian Earth Sci. 40, 162–171 (2011).

    Article  Google Scholar 

  39. Ludwig, K. R. Isoplot/Ex v.3.0: A Geochronological Toolkit for Microsoft Excel. (Geochronology Center Special Publication 4, Berkeley, 2003).

    Google Scholar 

Download references


We thank the Secretaría de Cultura de La Rioja and the Administración de Parques Nacionales for granting permits to work in the Talampaya National Park and the field crews of 2011–2014 and 2016–2017; the rangers of the National Park for their help in the field; J. F. Bonaparte, S. J. Nesbitt, C. L. Schultz and M. B. Soares for discussions on the Chañares Formation; J. Kaluza, M. Cárdenas, G. Aguirrezabala, L. Acosta, F. Solari Orellana, A. Lecuona, R. Barros, M. Iberlucea, A. Bustamante and S. de la Vega for preparation of fossil material. Research was funded by the Agencia Nacional de Investigaciones Científicas y Técnicas (PICT 2012-0925 and PICT 2014-0609 to J.B.D.), The Jurassic Foundation (to M.D.E.), Secretaría de Gobierno, La Rioja (to L.E.F.), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, to A.G.M.) and Universidad Nacional de San Juan (PROJOVI, UNSJ-SECITI to M.J.T.).

Author information

Authors and Affiliations



M.D.E., L.E.F. and J.B.D. designed the research project; all authors conducted fieldwork; M.D.E., L.E.F., A.G.M., M.B.v.B. and J.B.D. described the material; M.D.E., M.B.v.B. and J.B.D. conducted the phylogenetic analyses; S.R. and M.E. conducted the geologic studies; all the authors contributed to the text of the manuscript; M.D.E., L.E.F., A.G.M., S.R., M.B.v.B., J.R.A.T., E.M.H. and M.J.T. made the figures.

Corresponding author

Correspondence to Martín D. Ezcurra.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Information

Supplementary Figures, Supplementary Description, Supplementary Information of the Datings and Supplementary References

Supplementary Data 1

Skeletal and skull reconstructions of Tarjadia ruthaeSkeletal and skull reconstructions of Tarjadia ruthae

Supplementary Data 2

TNT data matrix used for the phylogenetic analysis

Supplementary Data 3

NEXUS data matrix used for the phylogenetic analysis

Supplementary Data 4

Detailed information of the dated zircons of the sample AM-260

Supplementary Data 5

Detailed information of the dated zircons of the sample AM-242

Supplementary Data 6

R script for the sampling simulations

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ezcurra, M.D., Fiorelli, L.E., Martinelli, A.G. et al. Deep faunistic turnovers preceded the rise of dinosaurs in southwestern Pangaea. Nat Ecol Evol 1, 1477–1483 (2017).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing