Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Environmental structuring of marine plankton phenology

Abstract

Seasonal cycles of primary production (phenology) critically influence biogeochemical cycles, ecosystem structure and climate. In the oceans, primary production is dominated by microbial phytoplankton that drift with currents, and show rapid turnover and chaotic dynamics, factors that have hindered understanding of their phenology. We used all available observations of upper-ocean phytoplankton concentration (1995–2015) to describe global patterns of phytoplankton phenology, the environmental factors that structure them, and their relationships to terrestrial patterns. Phytoplankton phenologies varied strongly by latitude and productivity regime: those in high-production regimes were governed by insolation, whereas those in low-production regimes were constrained by vertical mixing. In eight of ten ocean regions, our findings contradict the hypothesis that phytoplankton phenologies are coherent at basin scales. Lastly, the spatial organization of phenological patterns in the oceans was broadly similar to those on land, suggesting an overarching effect of insolation on the phenology of primary producers globally.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Data availability and modelling approach.
Fig. 2: Global patterns of phytoplankton phenology.
Fig. 3: Spatial synchrony of phytoplankton phenology.
Fig. 4: Environmental correlates of phytoplankton phenology.
Fig. 5: Biotic and abiotic structuring of phytoplankton phenology.
Fig. 6: Contrasting land and ocean phenology patterns.

Similar content being viewed by others

References

  1. Randerson, J. T., Field, C. B., Fung, I. Y. & Tans, P. P. Increases in early season ecosystem uptake explain recent changes in the seasonal cycle of atmospheric CO2 at high northern latitudes. Geophys. Res. Lett. 26, 2765–2768 (1999).

    Article  CAS  Google Scholar 

  2. Boyd, P. W. & Newton, P. P. Evidence of the potential influence of planktonic community structure on the interannual variability of particulate carbon flux. Deep Sea Res. Part I 42, 619–639 (1995).

    Article  Google Scholar 

  3. Eviner, V. T., Chapin, F. S., Vaughn, C. E., Chapin, F. S. III & Vaughn, C. E. Seasonal variations in plant species effects on soil N and P dynamics. Ecology 87, 974–986 (2006).

    Article  PubMed  Google Scholar 

  4. Inouye, D. W., Barr, B., Armitage, K. B. & Inouye, B. D. Climate change is affecting altitudinal migrants and hibernating species. Proc. Natl Acad. Sci. USA 97, 5–8 (2000).

    Article  Google Scholar 

  5. Post, E. et al. Climate change reduces reproductive success of an Arctic herbivore through trophic mismatch. Phil. Trans. R. Soc. Lond. B. Biol. Sci 363, 2369–2375 (2008).

    Article  Google Scholar 

  6. Platt, T., Fuentes-Yaco, C. & Frank, K. T. Spring algal bloom and larval fish survival. Nature 423, 398–399 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Rathcke, B. & Lacey, E. P. Phenological patterns of terrestrial plants. Annu. Rev. Ecol. Syst. 16, 179–214 (1985).

    Article  Google Scholar 

  8. Worm, B. et al. Impacts of biodiversity loss on ocean ecosystem services. Science 314, 787–90 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Vantrepotte, V. & Mélin, F. Inter-annual variations in the SeaWiFS global chlorophyll a concentration (1997–2007). Deep Sea Res. Part I 58, 429–441 (2011).

    Article  Google Scholar 

  10. Boyce, D. G., Dowd, M., Lewis, M. R. & Worm, B. Estimating global chlorophyll changes over the past century. Prog. Oceanogr. 122, 163–173 (2014).

    Article  Google Scholar 

  11. Boyce, D. G., Lewis, M. R. & Worm, B. Global phytoplankton decline over the past century. Nature 466, 591–596 (2010).

    Article  CAS  PubMed  Google Scholar 

  12. Gregg, W. W., Conkright, M. E., Ginoux, P., O’Reilly, J. E. & Casey, N. W. Ocean primary production and climate: global decadal changes. Geophys. Res. Lett. 30, 1809 (2003).

    Article  Google Scholar 

  13. Boyce, D. G. & Worm, B. Patterns and ecological implications of historical marine phytoplankton change. Mar. Ecol. Prog. Ser. 534, 251–272 (2015).

    Article  Google Scholar 

  14. Buitenwerf, R., Rose, L. & Higgins, S. I. Three decades of multi-dimensional change in global leaf phenology. Nat. Clim. Change 5, 364–368 (2015).

    Article  Google Scholar 

  15. Fu, Y. H. et al. Declining global warming effects on the phenology of spring leaf unfolding. Nature 526, 104–107 (2015).

    Article  CAS  PubMed  Google Scholar 

  16. Fridley, J. D. Extended leaf phenology and the autumn niche in deciduous forest invasions. Nature 485, 359–362 (2012).

    Article  CAS  PubMed  Google Scholar 

  17. Field, C. B., Behrenfeld, M. J. & Randerson, J. T. Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281, 237–240 (1998).

    Article  CAS  PubMed  Google Scholar 

  18. Falkowski, P. & Ravens, J. A. Aquatic Photosynthesis (Blackwell Science, 1997).

  19. Benincà, E. et al. Chaos in a long-term experiment with a plankton community. Nature 451, 822–825 (2008).

    Article  PubMed  Google Scholar 

  20. Demarcq, H., Reygondeau, G., Alvain, S. & Vantrepotte, V. Monitoring marine phytoplankton seasonality from space. Remote Sens. Environ. 117, 211–222 (2012).

    Article  Google Scholar 

  21. Racault, M. F., Le Quéré, C., Buitenhuis, E., Sathyendranath, S. & Platt, T. Phytoplankton phenology in the global ocean. Ecol. Indic. 14, 152–163 (2012).

    Article  Google Scholar 

  22. D’Ortenzio, F., Antoine, D., Martinez, E. & Ribera d’Alcalà, M. Phenological changes of oceanic phytoplankton in the 1980s and 2000s as revealed by remotely sensed ocean-color observations. Global Biogeochem. Cycles 26, 1–16 (2012).

    Google Scholar 

  23. Sapiano, M. R. P., Brown, C. W., Schollaert Uz, S. & Vargas, M. Establishing a global climatology of marine phytoplankton phenological characteristics. J. Geophys. Res. Ocean 117, 1–16 (2012).

    Article  Google Scholar 

  24. Morán, X. A. G. et al. Increasing importance of small phytoplankton in a warmer ocean. Global Change Biol 16, 1137–1144 (2010).

    Article  Google Scholar 

  25. Burnham, K. P. & Anderson, D. R. Model Selection and Multi-Model Inference: A Practical Information-Theoretic Approach (Springer, 2002).

  26. Moore, C. M. et al. Processes and patterns of oceanic nutrient limitation. Nat. Geosci. 6, 1–10 (2013).

  27. Wright, S. S. Correlation and causation. J. Agric. Res 20, 557–585 (1921).

    Google Scholar 

  28. Schimel, D. S. et al. Climate and nitrogen controls on the geography and timescales of terrestrial biogeochemical cycling. Global Biogeochem. Cycles 10, 677 (1996).

    Article  CAS  Google Scholar 

  29. Hastie, T. & Tibshirani, R. Generalized additive models. Stat. Sci. 1, 297–318 (1986).

    Article  Google Scholar 

  30. Vargas, M., Brown, C. W. & Sapiano, M. R. P. Phenology of marine phytoplankton from satellite ocean color measurements. Geophys. Res. Lett. 36, 2–6 (2009).

    Google Scholar 

  31. Behrenfeld, M. J. et al. Annual boom–bust cycles of polar phytoplankton biomass revealed by space-based lidar. Nat. Geosci. 10, 118–122 (2017).

  32. Kaufman, L. & Rousseeuw, P. J. Finding Groups in Data: An Introduction to Cluster Analysis (Wiley, 1990).

  33. Sournia, A. Cycle annuel du phytoplancton et de la production primaire dans les mers tropicales. Mar. Biol. 3, 287–303 (1969).

    Article  Google Scholar 

  34. Longhurst, A. Seasonal cooling and blooming in tropical oceans. Deep Sea Res. Part I 40, 2145–2165 (1993).

    Article  Google Scholar 

  35. Lumpkin, R. & Johnson, G. C. Global ocean surface velocities from drifters: mean, variance, El Nino–Southern Oscillation response, and seasonal cycle. J. Geophys. Res. 118, 2922–3006 (2013).

    Article  Google Scholar 

  36. Behrenfeld, M. J., Boss, E., Siegel, D. A. & Shea, D. M. Carbon-based ocean productivity and phytoplankton physiology from space. Global Biogeochem. Cycles 19, 1–14 (2005).

    Article  Google Scholar 

  37. Falkowski, P. G. & Wilson, C. Phytoplankton productivity in the North Pacific ocean since 1900 and implications for absorption of anthropogenic CO2. Nature 358, 741–743 (1992).

    Article  Google Scholar 

  38. Lewandowska, A. M. et al. Effects of sea surface warming on marine plankton. Ecol. Lett. 17, 614–623 (2014).

    Article  PubMed  Google Scholar 

  39. O’Connor, M. I., Piehler, M. F., Leech, D. M., Anton, A. & Bruno, J. F. Warming and resource availability shift food web structure and metabolism. PloS Biol. 7, 1–6 (2009).

    Google Scholar 

  40. Grace, J. B. Structural Equation Modeling in Natural Systems (Cambridge Univ. Press, 2006).

  41. Marra, J. & Moore, T. S. Monsoons, islands, and eddies: their effects on phytoplankton in the Indian Ocean. Geophys. Monogr. Ser 185, 57–70 (2009).

    Google Scholar 

  42. Boyce, D. G., Frank, K. T. & Leggett, W. C. From mice to elephants: overturning the ‘one size fits all’ paradigm in marine plankton food chains. Ecol. Lett. 18, 504–515 (2015).

    Article  PubMed  Google Scholar 

  43. Reich, P. B. Phenology of tropical forests: patterns, causes, and consequences. Can. J. Bot 73, 164–174 (1995).

    Article  Google Scholar 

  44. Menzel, A., von Vopelius, J., Estrella, N., Schleip, C. & Dose, V. Farmers’ annual activities are not tracking the speed of climate change. Clim. Res 32, 201–207 (2006).

    Google Scholar 

  45. Winder, M. & Cloern, J. E. The annual cycles of phytoplankton biomass. Phil. Trans. R. Soc. Lond. B Biol. Sci 365, 3215–3226 (2010).

    Article  Google Scholar 

  46. Capone, D. G., Zehr, J. P., Paerl, H. W., Bergman, B. & Carpenter, E. J. Trichodesmium, a globally significant marine cyanobacterium. Science 276, 1221–1229 (1997).

    Article  CAS  Google Scholar 

  47. Jickells, T. D. et al. Global iron connections between desert dust, ocean biogeochemistry, and climate. Science 308, 67–71 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Russel, G., Jarvis, P. G. & Monteith, J. L. Plant Canopies: Their Growth, Form and Function (Cambridge Univ. Press, 1989).

  49. Webb, T. J. Marine and terrestrial ecology: unifying concepts, revealing differences. Trends Ecol. Evol. 27, 535–541 (2012).

    Article  PubMed  Google Scholar 

  50. Tyler, J. E. The Secchi disk. Limnol. Oceanogr. 13, 1–6 (1968).

    Article  Google Scholar 

  51. Collier, A., Finlayson, G. M. & Cake, E. W. On the transparency of the sea. Limnol. Oceanogr. 13, 391–394 (1968).

    Article  Google Scholar 

  52. Batten, S. D. et al. CPR sampling: the technical background, materials and methods, consistency and comparability. Prog. Oceanogr. 58, 193–215 (2003).

    Article  Google Scholar 

  53. Forel, F. A. Une nouvelle forme de la gamme de couleur pour l’etude de l’eau des lacs. Arch. Sci. Phys. Nat. Phys./Soc. Phys. d’Hist. Nat. Genève 6 (1890).

  54. Harvey, H. W. Measurement of phytoplankton population. J. Mar. Biol. Assoc. UK 19, 761–73 (1934).

    Article  Google Scholar 

  55. Geider, R. J. Light and temperature-dependence of the carbon to chlorophyll-a ratio in microalgae and cyanobacteria — implications for physiology and growth of phytoplankton. New Phytol. 106, 1–34 (1987).

    Article  CAS  Google Scholar 

  56. Behrenfeld, M. J. et al. Revaluating ocean warming impacts on global phytoplankton. Nat. Clim. Change 6, 1–27 (2015).

  57. Jeffrey, S. W., Mantoura, R. F. C. & Wright, S. W. Phytoplankton Pigments in Oceanography. Monographs on Oceanographic Methodology 10 (UNESCO, 1997).

  58. Boyce, D. G. D. G., Lewis, M. & Worm, B. Integrating global chlorophyll data from 1890 to 2010. Limnol. Oceanogr. Methods 10, 840–852 (2012).

    Article  Google Scholar 

  59. Hovis, W. A. et al. Nimbus-7 coastal zone color scanner: system description and initial imagery. Science 210, 60–63 (1980).

    Article  CAS  PubMed  Google Scholar 

  60. McClain, C. R., Feldman, G. C. & Hooker, S. B. An overview of the SeaWiFS project and strategies for producing a climate research quality global ocean bio-optical time series. Deep Sea Res. II 51, 5–42 (2004).

    Article  Google Scholar 

  61. Moriarty, R. & O’Brien, T. D. Distribution of mesozooplankton biomass in the global ocean. Earth Syst. Sci. Data 5, 45–55 (2013).

    Article  Google Scholar 

  62. Casey, K. S., Brandon, T. B. & Cornillon, P. in Oceanography from Space: Revisited 1–375 (Springer, 2010).

  63. Ingleby, B. & Huddleston, M. Quality control of ocean temperature and salinity profiles — historical and real-time data. J. Mar. Syst 65, 158–175 (2007).

    Article  Google Scholar 

  64. Li, W. K. W. Macroecological patterns of phytoplankton in the northwestern North Atlantic Ocean. Nature 419, 154–157 (2002).

    Article  CAS  PubMed  Google Scholar 

  65. Behrenfeld, M. J. et al. Climate-driven trends in contemporary ocean productivity. Nature 444, 752–755 (2006).

    Article  CAS  PubMed  Google Scholar 

  66. Fairall, C. W. et al. Cool-skin and warm-layer effects on sea surface temperature. Geophys. Res. Lett. 101, 1295–1308 (1996).

    Article  Google Scholar 

  67. Wood, S. N. Generalized Additive Models: An Introduction with R (Chapman & Hall/CRC, 2006).

  68. Johnson, J. B. & Omland, K. S. Model selection in ecology and evolution. Trends Ecol. Evol. 19, 101–108 (2004).

    Article  PubMed  Google Scholar 

  69. Burnham, K. P. & Anderson, R. P. Multimodel inference: understanding AIC and BIC in model selection. Sociol. Methods Res 33, 261–304 (2004).

    Article  Google Scholar 

  70. Hartigan, J. A. & Hartigan, P. M. The dip test of unimodality. Ann. Stat 13, 70–84 (1985).

    Article  Google Scholar 

  71. Myers, R. A., Mertz, G. & Bridson, J. M. Spatial scales of interannual recruitment variations of marine, anadromous, and freshwater fish. Can. J. Fish. Aquat. Sci. 54, 1400–1407 (1997).

    Article  Google Scholar 

  72. Frank, K. T., Petrie, B., Leggett, W. C. & Boyce, D. G. Large scale, synchronous variability of marine fish populations driven by commercial exploitation. Proc. Natl Acad. Sci. USA 113, 8248–8253 (2016).

  73. Duffy, J. E. et al. Biodiversity mediates top-down control in eelgrass ecosystems: a global comparative-experimental approach. Ecol. Lett. 18, 696–705 (2015).

    Article  PubMed  Google Scholar 

  74. Mora, C. et al. Global human footprint on the linkage between biodiversity and ecosystem functioning in reef fishes. PLoS Biol. 9, e1000606 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Sugihara, G. et al. Detecting causality in complex ecosystems. Science 338, 496–500 (2012).

    Article  CAS  PubMed  Google Scholar 

  76. Pearl, J. Causal inference in statistics: an overview. Stat. Surv 3, 96–146 (2009).

    Article  Google Scholar 

  77. Behrenfeld, M. J. Abandoning Sverdrup’s critical depth hypothesis on phytoplankton blooms. Ecology 91, 977–89 (2010).

    Article  PubMed  Google Scholar 

  78. Rosseel, Y. Lavaan: an R package for structural equation modeling. J. Stat. Softw 48, 1–36 (2012).

    Article  Google Scholar 

  79. Petit, J. R. et al. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399, 429–436 (1999).

    Article  CAS  Google Scholar 

  80. Shipley, B. The AIC model selection method applied to path analytic models compared using a d-separation test. Ecology 94, 560–564 (2013).

    Article  PubMed  Google Scholar 

  81. Michael J. Behrenfeld. Abandoning Sverdrup’s Critical Depth Hypothesis on phytoplankton blooms. Ecology 91, (4): 977–989 (2010).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all data providers, and N. Yoccoz and K. Ellingson for statistical advice and critical feedback. Funding was provided by the Natural Sciences and Engineering Research Council of Canada (NSERC).

Author information

Authors and Affiliations

Authors

Contributions

D.G.B. and B.W. initiated the study. D.G.B. compiled the data, conducted the analyses and wrote the manuscript. B.P., K.T.F. and W.C.L. assisted with the analyses, and all authors discussed the results and edited the manuscript.

Corresponding author

Correspondence to Daniel G. Boyce.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Information

Supplementary Tables, Supplementary Figures, Supplementary Analyses and Supplementary Methods

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boyce, D.G., Petrie, B., Frank, K.T. et al. Environmental structuring of marine plankton phenology. Nat Ecol Evol 1, 1484–1494 (2017). https://doi.org/10.1038/s41559-017-0287-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-017-0287-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing