Abstract
Local adaptation is assumed to occur under limited gene flow. However, habitat-matching theory predicts dispersal should favour rather than hinder local adaptation when individuals selectively disperse towards habitats maximizing their performance. We provide experimental evidence that local adaptation to the upper margin of a species’ thermal niche is favoured by dispersal with habitat choice, but hindered under random dispersal. Our study challenges the idea that high gene flow precludes local adaptation, and provides unique experimental evidence of habitat choice as an overlooked mechanism responsible for adaptation under rapid environmental changes.
Access options
Subscribe to Journal
Get full journal access for 1 year
$99.00
only $8.25 per issue
All prices are NET prices.
VAT will be added later in the checkout.
Rent or Buy article
Get time limited or full article access on ReadCube.
from$8.99
All prices are NET prices.


References
- 1.
Kawecki, T. J. & Ebert, D. Ecol. Lett. 7, 1225–1241 (2004).
- 2.
Bolnick, D. I. & Nosil, P. Evolution 61, 2229–2243 (2007).
- 3.
Ronce, O. Annu. Rev. Ecol. Evol. Syst. 38, 231–253 (2007).
- 4.
Holt, R. D. Evol. Ecol. 1, 331–347 (1987).
- 5.
Edelaar, P., Siepielski, A. M. & Clobert, J. Evolution 62, 2462–2472 (2008).
- 6.
Edelaar, P. & Bolnick, D. I. Trends Ecol. Evol. 27, 659–665 (2012).
- 7.
Jacob, S., Bestion, E., Legrand, D., Clobert, J. & Cote, J. Evol. Ecol. 29, 851–871 (2015).
- 8.
Rice, W. R. & Salt, G. W. Evolution 44, 1140–1152 (1990).
- 9.
Bestion, E., Clobert, J. & Cote, J. Ecol. Lett. 18, 1226–1233 (2015).
- 10.
Garant, D., Kruuk, L. E., Wilkin, T. A., McCleery, R. H. & Sheldon, B. C. Nature 433, 60–65 (2005).
- 11.
Cote, J. et al. Ecography 40, 56–73 (2017).
- 12.
Clobert, J., Le Galliard, J.-F., Cote, J., Meylan, S. & Massot, M. Ecol. Lett. 12, 197–209 (2009).
- 13.
Chaine, A. S., Schtickzelle, N., Polard, T., Huet, M. & Clobert, J. Evolution 54, 1290–1300 (2010).
- 14.
Jacob, S. et al. Evolution 70, 2336–2345 (2016).
- 15.
Blanquart, F., Kaltz, O., Nuismer, S. L. & Gandon, S. Ecol. Lett. 16, 1195–1205 (2013).
- 16.
Postma, E. & van Noordwijk, A. J. Nature 433, 65–68 (2005).
- 17.
Duckworth, R. A. & Badyaev, A. V. Proc. Natl Acad. Sci. USA 104, 15017–15022 (2007).
- 18.
Hendry, A. P. in Eco-evolutionary Dynamics 109–132 (Princeton Univ. Press, Princeton, NJ, 2017).
- 19.
Lee, C. E. Trends Ecol. Evol. 17, 386–391 (2002).
- 20.
Kolbe, J. et al. Nature 431, 177–181 (2004).
- 21.
Fronhofer, E. A. & Altermatt, F. Nat. Commun. 6, 6844 (2015).
- 22.
Travis, J. M. J. et al. Oikos 122, 1532–1540 (2013).
- 23.
Zufall, R. A., Dimond, K. L. & Doerder F. P. Mol. Ecol. 22, 1081–1091 (2013).
- 24.
Kahm, M., Hasenbrink, G., Lichtenberg-Frate, H., Ludwig, J. & Kschischo, M. J. Stat. Softw. 33, 1–21 (2010).
Acknowledgements
We thank O. Ronce for helpful comments. This study was supported by funding from the Agence Nationale de la Recherche INDHET (ANR-12-BSV7-0023) to S.J. and J.C., ANR Netselect (ANR-10-JCJC-1704) to A.S.C., and ARC (Actions de Recherche Concertées) 10-15/031, F.S.R.-FNRS (Fond National pour la Recherche Scientifique) and UCL-FSR (Université Catholique de Louvain) to S.J., D.L. and N.S. (an FNRS Research research associate). S.J. was awarded by a Move-In-Louvain Marie Curie Action fellowship. D.B., S.J. and N.S. were funded by the FWO (Research Foundation—Flanders) research community EVENET (Eco-evolutionary network of biotic interactions) and a networking grant from Université Catholique de Louvain (FEEDING). D.B. was funded by the FWO (INVADED G018017N). This work was conducted by S.J., D.L., A.S.C., M.H. and J.C as part of a project of the Laboratoire d’Excellence entitled TULIP (Toward a Unified Theory of Biotic Interactions; ANR-10-LABX-41), and contributes (BRC401) to the Biodiversity Research Centre at Université Catholique de Louvain, to which N.S. and S.J. are affiliated.
Author information
Affiliations
Contributions
S.J., D.L., A.S.C., D.B. and J.C. defined the research theme. S.J., D.L., A.S.C., D.B., M.H. and J.C. set up the experimental protocols. S.J. performed the experiments and analysed the data with the help of M.H. and N.S. S.J. wrote the manuscript. D.L., A.S.C., D.B., N.S. and J.C. contributed substantially to the revisions.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Additional information
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Electronic supplementary material
Supplementary Information
Supplementary Figures, Supplementary Tables and Supplementary Material
Rights and permissions
About this article
Cite this article
Jacob, S., Legrand, D., Chaine, A.S. et al. Gene flow favours local adaptation under habitat choice in ciliate microcosms. Nat Ecol Evol 1, 1407–1410 (2017). https://doi.org/10.1038/s41559-017-0269-5
Received:
Accepted:
Published:
Issue Date:
Further reading
-
The river shapes the genetic diversity of common reed in the Yellow River Delta via hydrochory dispersal and habitat selection
Science of The Total Environment (2021)
-
The Evolution of Immigration Strategies Facilitates Niche Expansion by Divergent Adaptation in a Structured Metapopulation Model
The American Naturalist (2020)
-
Partial migration of White-winged snowfinches is correlated with winter weather conditions
Global Ecology and Conservation (2020)
-
The relative importance of plasticity versus genetic differentiation in explaining between population differences; a meta‐analysis
Ecology Letters (2020)
-
Shared ancestral polymorphisms and chromosomal rearrangements as potential drivers of local adaptation in a marine fish
Molecular Ecology (2020)