Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Honeybee spillover reshuffles pollinator diets and affects plant reproductive success

Abstract

During the past decades, managed honeybee stocks have increased globally. Managed honeybees are particularly used within mass-flowering crops and often spill over to adjacent natural habitats after crop blooming. Here, we uniquely show the simultaneous impact that honeybee spillover has on wild plant and animal communities in flower-rich woodlands via changes in plant–pollinator network structure that translate into a direct negative effect on the reproductive success of a dominant wild plant. Honeybee spillover leads to a re-assembly of plant–pollinator interactions through increased competition with other pollinator species. Moreover, honeybee preference for the most abundant plant species reduces its seed set, driven by high honeybee visitation rates that prevent pollen tube growth. Our study therefore calls for an adequate understanding of the trade-offs between providing pollination services to crops and the effects that managed pollinators might have on wild plants and pollinators.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Description of study area and experimental design.
Fig. 2: Effect of honeybee abundance on apparent competition between honeybees and other pollinator species, and interaction turnover.
Fig. 3: Effect of honeybee abundance on seed set and pollen limitation for the two most abundant plant species.

References

  1. 1.

    Aizen, M. A., Garibaldi, L. A., Cunningham, S. A. & Klein, A. M. Long-term global trends in crop yield and production reveal no current pollination shortage but increasing pollinator dependency. Curr. Biol. 18, 1572–1575 (2008).

    Article  PubMed  CAS  Google Scholar 

  2. 2.

    Aizen, M. A. & Harder, L. D. The global stock of domesticated honey bees is growing slower than agricultural demand for pollination. Curr. Biol. 19, 915–918 (2009).

    Article  PubMed  CAS  Google Scholar 

  3. 3.

    Kleijn, D. et al. Delivery of crop pollination services is an insufficient argument for wild pollinator conservation. Nat. Commun. 6, 7414 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Kennedy, C. M. et al. A global quantitative synthesis of local and landscape effects on wild bee pollinators in agroecosystems. Ecol. Lett. 16, 584–599 (2013).

    Article  PubMed  Google Scholar 

  5. 5.

    Rader, R. et al. Alternative pollinator taxa are equally efficient but not as effective as the honeybee in a mass flowering crop. J. Appl. Ecol. 46, 1080–1087 (2009).

    Article  Google Scholar 

  6. 6.

    Blitzer, E. J. et al. Spillover of functionally important organisms between managed and natural habitats. Agric. Ecosyst. Environ. 146, 34–43 (2012).

    Article  Google Scholar 

  7. 7.

    Montero-Castaño, A. & Vilà, M. Influence of the honeybee and trait similarity on the effect of a non-native plant on pollination and network rewiring. Funct. Ecol. 31, 142–152 (2017).

    Article  Google Scholar 

  8. 8.

    González-Varo, J. P. & Vilà, M. Spillover of managed honeybees from mass-flowering crops into natural habitats. Biol. Conserv. 212, 376–382 (2017).

    Article  Google Scholar 

  9. 9.

    Sáez, A., Morales, C. L., Ramos, L. Y. & Aizen, M. A. Extremely frequent bee visits increase pollen deposition but reduce drupelet set in raspberry. J. Appl. Ecol. 51, 1603–1612 (2014).

    Article  Google Scholar 

  10. 10.

    Thomson, D. M. Local bumble bee decline linked to recovery of honey bees, drought effects on floral resources. Ecol. Lett. 19, 1247–1255 (2016).

    Article  PubMed  Google Scholar 

  11. 11.

    Cane, J. H. & Tepedino, V. J. Gauging the effect of honey bee pollen collection on native bee communities. Conserv. Lett. 10, 205–210 (2016).

    Article  Google Scholar 

  12. 12.

    Torné-Noguera, A., Rodrigo, A., Osorio, S. & Bosch, J. Collateral effects of beekeeping: impacts on pollen–nectar resources and wild bee communities. Basic Appl. Ecol. 17, 199–209 (2016).

    Article  Google Scholar 

  13. 13.

    Brosi, B. J. & Briggs, H. M. Single pollinator species losses reduce floral fidelity and plant reproductive function. Proc. Natl Acad. Sci. USA 110, 13044–13048 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Geslin, B. et al. Massively introduced managed species and their consequences for plant–pollinator interactions. Adv. Ecol. Res. 57, 147–199 (2017).

    Article  Google Scholar 

  15. 15.

    Herbertsson, L., Lindström, S. A. M., Rundlöf, M., Bommarco, R. & Smith, H. G. Competition between managed honeybees and wild bumblebees depends on landscape context. Basic Appl. Ecol. 17, 609–616 (2016).

  16. 16.

    Coffey, M. F. & Breen, J. Seasonal variation in pollen and nectar sources of honey bees in Ireland. J. Apic. Res. 36, 63–76 (1997).

    Article  Google Scholar 

  17. 17.

    Gross, C. L. The effect of introduced honeybees on native bee visitation and fruit-set in Dillwynia juniperina (Fabaceae) in a fragmented ecosystem. Biol. Conserv. 102, 89–95 (2001).

    Article  Google Scholar 

  18. 18.

    Grüter, C., Moore, H., Firmin, N., Helanterä, H. & Ratnieks, F. L. W. Flower constancy in honey bee workers (Apis mellifera) depends on ecologically realistic rewards. J. Exp. Biol. 214, 1397–1402 (2011).

    Article  PubMed  Google Scholar 

  19. 19.

    von Frisch, K. The Dance Language and Orientation of Bees (Harvard Univ. Press, Cambridge, 1965).

  20. 20.

    Vanbergen, A. J., Woodcock, B. A., Heard, M. S. & Chapman, D. S. Network size, structure and mutualism dependence affect the propensity for plant–pollinator extinction cascades. Funct. Ecol. 31, 1285–1293 (2017).

    Article  Google Scholar 

  21. 21.

    FAOSTAT: Statistical Databases and Data-Sets (FAO, Rome, 2014).

  22. 22.

    Aizen, M. A. & Harder, L. D. Geographic variation in the growth of domesticated honey bee stocks: disease or economics? Commun. Integr. Biol. 2, 464–466 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  23. 23.

    FAOSTAT Database on Agriculture (FAO, Rome, 2014).

  24. 24.

    Fründ, J., McCann, K. S. & Williams, N. M. Sampling bias is a challenge for quantifying specialization and network structure: lessons from a quantitative niche model. Oikos 125, 502–513 (2015).

    Article  Google Scholar 

  25. 25.

    de Menezes Pedro, S. R. & de Camargo, J. M. F. Interactions on floral resources between the Africanized honey bee Apis mellifera L and the native bee community (Hymenoptera: Apoidea) in a natural “cerrado” ecosystem in southeast Brazil. Apidologie 22, 397–415 (1991).

    Article  Google Scholar 

  26. 26.

    Garibaldi, L. A. et al. Wild pollinators enhance fruit set of crops regardless of honey bee abundance. Science 339, 1608–1611 (2013).

    Article  PubMed  CAS  Google Scholar 

  27. 27.

    Holzschuh, A. et al. Mass-flowering crops dilute pollinator abundance in agricultural landscapes across Europe. Ecol. Lett. 19, 1228–1236 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Magrach, A. et al. Plant–pollinator networks in semi-natural grasslands are resistant to the loss of pollinators during blooming of mass-flowering crops. Ecography https://doi.org/10.1111/ecog.02847 (2017).

  29. 29.

    González-Varo, J. P., Ortiz-Sánchez, F. J. & Vilà, M. Total bee dependence on one flower species despite available congeners of similar floral shape. PLoS ONE 11, e0163122 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. 30.

    Bosch, J. Floral biology and pollinators of three co-occurring Cistus species (Cistaceae). Bot. J. Linn. Soc. 109, 39–55 (1992).

    Article  Google Scholar 

  31. 31.

    Morales, C. L. & Traveset, A. Interspecific pollen transfer: magnitude, prevalence and consequences for plant fitness. Crit. Rev. Plant Sci. 27, 221–238 (2008).

    Article  CAS  Google Scholar 

  32. 32.

    Morris, W. Mutualism denied? Nectar-robbing bumble bees do not reduce female or male success of bluebells. Ecology 77, 1451–1462 (1996).

    Article  Google Scholar 

  33. 33.

    González-Varo, J. P., Albaladejo, R. G., Aparicio, A. & Arroyo, J. Linking genetic diversity, mating patterns and progeny performance in fragmented populations of a Mediterranean shrub. J. Appl. Ecol. 47, 1242–1252 (2010).

    Article  Google Scholar 

  34. 34.

    Fründ, J., Dormann, C. F., Holzschuh, A. & Tscharntke, T. Bee diversity effects on pollination depend on functional complementarity and niche shifts. Ecology 94, 2042–2054 (2013).

    Article  PubMed  Google Scholar 

  35. 35.

    McGill, B. J. et al. Species abundance distributions: moving beyond single prediction theories to integration within an ecological framework. Ecol. Lett. 10, 995–1015 (2007).

    Article  PubMed  Google Scholar 

  36. 36.

    Watts, S., Dormann, C. F., Martín González, A. M. & Ollerton, J. The influence of floral traits on specialization and modularity of plant–pollinator networks in a biodiversity hotspot in the Peruvian Andes. Ann. Bot. 118, 415–429 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Aebi, A. et al. Back to the future: Apis versus non-Apis pollination—a response to Ollerton et al. Trends Ecol. Evol. 27, 142–143 (2012).

    Article  Google Scholar 

  38. 38.

    Danner, N., Molitor, A. M., Schiele, S., Härtel, S. & Steffan-Dewenter, I. Season and landscape composition affect pollen foraging distances and habitat use of honey bees. Ecol. Appl. 26, 1920–1929 (2016).

    Article  PubMed  Google Scholar 

  39. 39.

    Hsieh, T. C., Ma, K. H. & Chao, A. iNEXT: Iterpolation and Extrapolation for Species Diversity. R package v. 2.0.8. (R Foundation for Statistical Computing, Vienna, 2016).

  40. 40.

    Tylianakis, J. M., Tscharntke, T. & Lewis, O. T. Habitat modification alters the structure of tropical host–parasitoid food webs. Nature 445, 202–205 (2007).

    Article  PubMed  CAS  Google Scholar 

  41. 41.

    Dormann, C. F., Frund, J., Bluthgen, N. & Gruber, B. Indices, graphs and null models: analyzing bipartite ecological networks. Open Ecol. J. 2, 7–24 (2009).

    Article  Google Scholar 

  42. 42.

    Müller, C. B., Adriaanse, I. C. T., Belshaw, R. & Godfray, H. C. J. The structure of an aphid–parasitoid community. J. Anim. Ecol. 68, 346–370 (1999).

    Article  Google Scholar 

  43. 43.

    Blüthgen, N., Menzel, F. & Blüthgen, N. Measuring specialization in species interaction networks. BMC Ecol. 6, 9 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Poisot, T., Canard, E., Mouillot, D., Mouquet, N. & Gravel, D. The dissimilarity of species interaction networks. Ecol. Lett. 15, 1353–1361 (2012).

    Article  PubMed  Google Scholar 

  45. 45.

    Legendre, P. Interpreting the replacement and richness difference components of beta diversity. Glob. Ecol. Biogeogr. 23, 1324–1334 (2014).

    Article  Google Scholar 

  46. 46.

    Carvalheiro, L. G. et al. The potential for indirect effects between co-flowering plants via shared pollinators depends on resource abundance, accessibility and relatedness. Ecol. Lett. 17, 1389–1399 (2014).

    Article  PubMed  Google Scholar 

  47. 47.

    Bartoń, K. MuMIn: Multi-Model Inference. R package v. 1.9.13 (R Foundation for Statistical Computing, Vienna, 2013); http://CRAN.R-project.org/package=MuMIn

  48. 48.

    Burnham, K. P., Anderson, D. R. & Huyvaert, K. P. AIC model selection and multimodel inference in behavioral ecology: some background, observations, and comparisons. Behav. Ecol. Sociobiol. 65, 23–35 (2011).

    Article  Google Scholar 

  49. 49.

    Cade, B. S. & Noon, B. R. A gentle introduction to quantile regression for ecologists. Front. Ecol. Env. 1, 412–420 (2003).

  50. 50.

    Lefcheck, J. S. piecewiseSEM: piecewise structural equation modelling in R for ecology, evolution, and systematics. Methods Ecol. Evol. 7, 573–579 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

This project was partially funded by the EU FP7 STEP project ‘Status and trends of European pollinators’ (244 090; http://www.STEP-project.net) and Biodiversa-FACCE project ‘Enhancing biodiversity-based ecosystem services to crops through optimized densities of green infrastructure in agricultural landscapes’ (PCIN-2014-048, http://www.cec.lu.se/ecodeal), the Spanish Ministry of Economy and Competitiveness FLORMAS (CGL2012-33801) and the Severo Ochoa program (SEV-2012-0262). A.M. acknowledges funding from the Juan de la Cierva Incorporación program (IJCI-2014-22558). We thank R. Gómez, A. Carrillo-Gavilán, C. Molina and D. Ragel for their assistance in fieldwork. We thank J. M. Ortiz and A. Vujic for identifying most bee and hoverfly specimens, respectively.

Author information

Affiliations

Authors

Contributions

J.P.G.V. and M.V. conceived the experimental design; J.P.G.V., M.B. and A.M. collected field data; A.M. led data analysis and drafted the first version of the manuscript; I.B. participated in data analyses and helped draft the manuscript. All authors commented on manuscript drafts and gave final approval for publication.

Corresponding author

Correspondence to Ainhoa Magrach.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary material

Supplementary Tables 1–8; Supplementary Figures 1–9

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Magrach, A., González-Varo, J.P., Boiffier, M. et al. Honeybee spillover reshuffles pollinator diets and affects plant reproductive success. Nat Ecol Evol 1, 1299–1307 (2017). https://doi.org/10.1038/s41559-017-0249-9

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing