Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A general scaling law reveals why the largest animals are not the fastest

Abstract

Speed is the fundamental constraint on animal movement, yet there is no general consensus on the determinants of maximum speed itself. Here, we provide a general scaling model of maximum speed with body mass, which holds across locomotion modes, ecosystem types and taxonomic groups. In contrast to traditional power-law scaling, we predict a hump-shaped relationship resulting from a finite acceleration time for animals, which explains why the largest animals are not the fastest. This model is strongly supported by extensive empirical data (474 species, with body masses ranging from 30 μg to 100 tonnes) from terrestrial as well as aquatic ecosystems. Our approach unravels a fundamental constraint on the upper limit of animal movement, thus enabling a better understanding of realized movement patterns in nature and their multifold ecological consequences.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Concept of time-dependent and mass-dependent realized maximum speed of animals.
Figure 2: Empirical data and time-dependent model fit for the allometric scaling of maximum speed.
Figure 3: Effect of thermoregulation on the maximum speed of animals.
Figure 4: Predicting the maximum speed of extinct species with the time-dependent model.

References

  1. Jetz, W., Carbone, C., Fulford, J. & Brown, J. H. The scaling of animal space use. Science 306, 266–268 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Bauer, S. & Hoye, B. J. Migratory animals couple biodiversity and ecosystem functioning worldwide. Science 344, 1242552 (2014).

    Article  CAS  PubMed  Google Scholar 

  3. Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Pawar, S., Dell, A. I. & Savage, V. M. Dimensionality of consumer search space drives trophic interaction strengths. Nature 486, 485–489 (2012).

    Article  CAS  PubMed  Google Scholar 

  5. Neutel, A.-M. et al. Reconciling complexity with stability in naturally assembling food webs. Nature 449, 599–602 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Kays, R., Crofoot, M. C., Jetz, W. & Wikelski, M. Terrestrial animal tracking as an eye on life and planet. Science 348, aaa2478 (2015).

    Article  PubMed  Google Scholar 

  7. Hussey, N. E. et al. Aquatic animal telemetry: a panoramic window into the underwater world. Science 348, 1255642 (2015).

    Article  PubMed  Google Scholar 

  8. Peters, R. H. The Ecological Implications of Body Size (Cambridge Univ. Press, 1983).

  9. Hedenström, A. Scaling migration speed in animals that run, swim and fly. J. Zool. 259, 155–160 (2003).

    Article  Google Scholar 

  10. Bejan, A. & Marden, J. H. Unifying constructal theory for scale effects in running, swimming and flying. J. Exp. Biol. 209, 238–248 (2006).

    Article  PubMed  Google Scholar 

  11. Iriarte-Díaz, J. Differential scaling of locomotor performance in small and large terrestrial mammals. J. Exp. Biol. 205, 2897–2908 (2002).

    PubMed  Google Scholar 

  12. Fuentes, M. A. Theoretical considerations on maximum running speeds for large and small animals. J. Theor. Biol. 390, 127–135 (2016).

    Article  PubMed  Google Scholar 

  13. Garland, T. The relation between maximal running speed and body mass in terrestrial mammals. J. Zool. 199, 157–170 (1983).

    Article  Google Scholar 

  14. Clemente, C. J. & Richards, C. Muscle function and hydrodynamics limit power and speed in swimming frogs. Nat. Commun. 4, 2737 (2013).

    Article  PubMed  Google Scholar 

  15. Clemente, C. J., Thompson, G. G. & Withers, P. C. Evolutionary relationships of sprint speed in Australian varanid lizards. J. Zool. 278, 270–280 (2009).

    Article  Google Scholar 

  16. Van Damme, R. & Vanhooydonck, B. Origins of interspecific variation in lizard sprint capacity. Funct. Ecol. 15, 186–202 (2001).

    Article  Google Scholar 

  17. Dick, T. J. & Clemente, C. J. Where have all the giants gone? How animals deal with the problem of size. PLoS Biol. 15, e2000473 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Clemente, C. J., Withers, P. C. & Thompson, G. Optimal body size with respect to maximal speed for the yellow-spotted monitor lizard (Varanus panoptes; Varanidae). Physiol. Biochem. Zool. 85, 265–273 (2012).

    Article  PubMed  Google Scholar 

  19. Alexander, R. M. Principles of Animal Locomotion (Princeton Univ. Press, 2003).

  20. Huey, R. B. & Hertz, P. E. Effects of body size and slope on acceleration of a lizard (Stellio stellio). J. Exp. Biol. 110, 113–123 (1984).

    Google Scholar 

  21. Elliott, J. P., Cowan, I. M. & Holling, C. S. Prey capture by the African lion. Can. J. Zool. 55, 1811–1828 (1977).

    Article  Google Scholar 

  22. Garcia, G. J. & da Silva, J. K. On the scaling of mammalian long bones. J. Exp. Biol. 207, 1577–1584 (2004).

    Article  PubMed  Google Scholar 

  23. Biewener, A. A. Biomechanical consequences of scaling. J. Exp. Biol. 208, 1665–1676 (2005).

    Article  PubMed  Google Scholar 

  24. Jones, J. H. & Lindstedt, S. L. Limits to maximal performance. Annu. Rev. Physiol. 55, 547–569 (1993).

    Article  CAS  PubMed  Google Scholar 

  25. Weyand, P. G. & Bundle, M. W. Energetics of high-speed running: integrating classical theory and contemporary observations. Am. J. Physiol. Regul. Integr. Comp. Physiol. 288, R956–R965 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Pollock, C. M. & Shadwick, R. E. Allometry of muscle, tendon, and elastic energy storage capacity in mammals. Am. J. Physiol. Regul. Integr. Comp. Physiol. 266, R1022–R1031 (1994).

    Article  CAS  Google Scholar 

  27. Alexander, Rm, Jayes, A. S., Maloiy, G. M. O. & Wathuta, E. M. Allometry of the leg muscles of mammals. J. Zool. 194, 539–552 (1981).

    Article  Google Scholar 

  28. Bennett, M. B. Allometry of the leg muscles of birds. J. Zool. 238, 435–443 (1996).

    Article  Google Scholar 

  29. Maloiy, G. M. O., Alexander, R., Njau, R. & Jayes, A. S. Allometry of the legs of running birds. J. Zool. 187, 161–167 (1979).

    Article  Google Scholar 

  30. Comparative Physiology: Life in Water and on Land (eds Dejours, P. et al.) (FIDIA Research Series Vol. 9, Springer, 1987).

  31. Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M. & Charnov, E. L. Effects of size and temperature on metabolic rate. Science 293, 2248–2251 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Williams, T. M. The evolution of cost efficient swimming in marine mammals: limits to energetic optimization. Phil. Trans. R. Soc. Lond. B Biol. Sci. 354, 193–201 (1999).

    Article  Google Scholar 

  33. Biewener, A. A. Bone strength in small mammals and bipedal birds: do safety factors change with body size? J. Exp. Biol. 98, 289–301 (1982).

    CAS  PubMed  Google Scholar 

  34. Blanco, R. E. & Jones, W. W. Terror birds on the run: a mechanical model to estimate its maximum running speed. Proc. R. Soc. B Biol. Sci. 272, 1769–1773 (2005).

    Article  Google Scholar 

  35. Thulborn, R. A. Speeds and gaits of dinosaurs. Palaeogeogr. Palaeoclimatol. Palaeoecol. 38, 227–256 (1982).

    Article  Google Scholar 

  36. Sellers, W. I. & Manning, P. L. Estimating dinosaur maximum running speeds using evolutionary robotics. Proc. R. Soc. Lond. B Biol. Sci. 274, 2711–2716 (2007).

    Article  Google Scholar 

  37. Hutchinson, J. R. & Garcia, M. Tyrannosaurus was not a fast runner. Nature 415, 1018–1021 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).

    Article  Google Scholar 

  39. Rall, B. C. et al. Universal temperature and body-mass scaling of feeding rates. Phil. Trans. R. Soc. Lond. B Biol. Sci. 367, 2923–2934 (2012).

    Article  Google Scholar 

  40. Dell, A. I., Pawar, S. & Savage, V. M. Systematic variation in the temperature dependence of physiological and ecological traits. Proc. Natl Acad. Sci. USA 108, 10591–10596 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tamburello, N., Côté, I. M. & Dulvy, N. K. Energy and the scaling of animal space use. Am. Nat. 186, 196–211 (2015).

    Article  PubMed  Google Scholar 

  42. Carbone, C., Cowlishaw, G., Isaac, N. J. B. & Rowcliffe, J. M. How far do animals go? Determinants of day range in mammals. Am. Nat. 165, 290–297 (2005).

    Article  PubMed  Google Scholar 

  43. Hein, A. M., Hou, C. & Gillooly, J. F. Energetic and biomechanical constraints on animal migration distance. Ecol. Lett. 15, 104–110 (2012).

    Article  PubMed  Google Scholar 

  44. R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2015).

  45. Freckleton, R. P. On the misuse of residuals in ecology: regression of residuals vs. multiple regression. J. Anim. Ecol. 71, 542–545 (2002).

    Article  Google Scholar 

Download references

Acknowledgements

M.R.H., W.J., B.C.R. and U.B. acknowledge the support of the German Centre for integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig funded by the German Research Foundation (FZT 118).

Author information

Authors and Affiliations

Authors

Contributions

M.R.H. and U.B. developed the model. M.R.H. gathered the data. M.R.H. and B.C.R. carried out statistical analyses. W.J. was involved in study concept and data analyses. M.R.H. and U.B. wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Myriam R. Hirt.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary information

Supplementary Tables 1–5; maximum speed database

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hirt, M.R., Jetz, W., Rall, B.C. et al. A general scaling law reveals why the largest animals are not the fastest. Nat Ecol Evol 1, 1116–1122 (2017). https://doi.org/10.1038/s41559-017-0241-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-017-0241-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing