Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Agricultural intensification without biodiversity loss is possible in grassland landscapes

Abstract

Grassland biodiversity in managed landscapes is threatened by land-use intensification, but is also dependent on low-intensity management. Solutions that allow for both agricultural production and species conservation may be realized either on individual grasslands, by adjusting management intensity, or at the landscape level, when grasslands are managed at different intensities. Here we use a dataset of more than 1,000 arthropod species collected in more than 100 grasslands along gradients of productivity, to assess the reaction of individual species to changes in productivity. We defined a range of land-use strategies and evaluated their effects on overall production and on species abundances. We show that conservation of arthropods can be improved without reducing overall production. We also find that production can be increased without jeopardizing conservation. Conservation and production could, however, not be maximized simultaneously at the landscape level, emphasizing that management goals need to be clearly defined.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Selection of optimal land-use strategies based on abundance–productivity curves.
Figure 2: Optimal strategies across the range of possible landscape-level production targets.
Figure 3: Productivity in grassland biomass on each grassland assigned by the optimization algorithms.
Figure 4: Rare species that reach their critical productivity for vulnerability or extinction at different levels of productivity.

References

  1. 1.

    Hejcman, M., Hejcmanová, P., Pavlů, V. & Beneš, J. Origin and history of grasslands in central Europe - a review. Grass Forage Sci. 68, 345–363 (2013).

    Article  Google Scholar 

  2. 2.

    Greening (European Commission, 2016); http://ec.europa.eu/agriculture/direct-support/greening/index_en.htm

  3. 3.

    Gossner, M. M. et al. Land-use intensification causes multitrophic homogenization of grassland communities. Nature 540, 266–269 (2016).

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Allan, E. et al. Interannual variation in land-use intensity enhances grassland multidiversity. Proc. Natl Acad. Sci. USA 111, 308–313 (2014).

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Hopkins, A. & Wilkins, R. J. Temperate grassland: key developments in the last century and future perspectives. J. Agr. Sci. 144, 503–523 (2006).

    CAS  Article  Google Scholar 

  6. 6.

    Kleijn, D. & Sutherland, W. J. How effective are European agri-environment schemes in conserving and promoting biodiversity? J. Appl. Ecol. 40, 947–969 (2003).

    Article  Google Scholar 

  7. 7.

    Veen, P., Jefferson, R., de Smidt, J. & van derStraaten, J. (eds) Grasslands in Europe of High Nature Value 320 (KNNV, 2009).

  8. 8.

    Phalan, B., Onial, M., Balmford, A. & Green, R. E. Reconciling food production and biodiversity conservation: land sharing and land sparing compared. Science 333, 1289–1291 (2011).

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Hulme, M. F. et al. Conserving the birds of Uganda’s banana-coffee arc: land sparing and land sharing compared. PLoS ONE 8, e54597 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Kamp, J. et al. Agricultural development and the conservation of avian biodiversity on the Eurasian steppes: a comparison of land-sparing and land-sharing approaches. J. Appl. Ecol. 52, 1578–1587 (2015).

    Article  Google Scholar 

  11. 11.

    Green, R. E., Cornell, S. J., Scharlemann, J. P. & Balmford, A. Farming and the fate of wild nature. Science 307, 550–555 (2005).

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Gabriel, D., Sait, S. M., Kunin, W. E., Benton, T. G. & Steffan-Dewenter, I. Food production vs. biodiversity: comparing organic and conventional agriculture. J. Appl. Ecol. 50, 355–364 (2013).

    Article  Google Scholar 

  13. 13.

    Lamb, A., Balmford, A., Green, R. E. & Phalan, B. To what extent could edge effects and habitat fragmentation diminish the potential benefits of land sparing? Biol. Conserv. 195, 264–271 (2016).

    Article  Google Scholar 

  14. 14.

    Butsic, V. & Kuemmerle, T. Using optimization methods to align food production and biodiversity conservation beyond land sharing and land sparing. Ecol. Appl. 25, 589–595 (2015).

    Article  PubMed  Google Scholar 

  15. 15.

    Miettinen, K. Nonlinear Multiobjective Optimization (Springer, 1998).

  16. 16.

    Edwards, D. P. et al. Land-sharing versus land-sparing logging: reconciling timber extraction with biodiversity conservation. Glob. Change Biol. 20, 183–191 (2014).

    Article  Google Scholar 

  17. 17.

    Tscharntke, T. et al. Global food security, biodiversity conservation and the future of agricultural intensification. Biol. Conserv. 151, 53–59 (2012).

    Article  Google Scholar 

  18. 18.

    Fischer, J. et al. Land sparing versus land sharing: moving forward. Conserv. Lett. 7, 149–157 (2014).

    Article  Google Scholar 

  19. 19.

    Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R. & Polasky, S. Agricultural sustainability and intensive production practices. Nature 418, 671–677 (2002).

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Bennett, E. M. Changing the agriculture and environment conversation. Nat. Ecol. Evol. 1, 0018 (2017).

    Article  Google Scholar 

  21. 21.

    Dotta, G., Phalan, B., Silva, T. W., Green, R. & Balmford, A. Assessing strategies to reconcile agriculture and bird conservation in the temperate grasslands of South America. Conserv. Biol. 30, 618–627 (2016).

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Bennett, J. R. et al. Balancing phylogenetic diversity and species numbers in conservation prioritization, using a case study of threatened species in New Zealand. Biol. Conserv. 174, 47–54 (2014).

    Article  Google Scholar 

  23. 23.

    Cadotte, M. W. & Jonathan Davies, T. Rarest of the rare: advances in combining evolutionary distinctiveness and scarcity to inform conservation at biogeographical scales. Divers. Distrib. 16, 376–385 (2010).

    Article  Google Scholar 

  24. 24.

    Simons, N. K. et al. Contrasting effects of grassland management modes on species-abundance distributions of multiple groups. Agr. Ecosyst. Environ. 237, 143–153 (2017).

    Article  Google Scholar 

  25. 25.

    Simons, N. K., Weisser, W. W. & Gossner, M. M. Multi-taxa approach shows consistent shifts in arthropod functional traits along grassland land-use intensity gradient. Ecology 97, 754–764 (2016).

    PubMed  Google Scholar 

  26. 26.

    Allan, E. et al. Land use intensification alters ecosystem multifunctionality via loss of biodiversity and changes to functional composition. Ecol. Lett. 18, 834–843 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Batáry, P. et al. Responses of grassland specialist and generalist beetles to management and landscape complexity. Divers. Distrib. 13, 196–202 (2007).

    Article  Google Scholar 

  28. 28.

    Ball, I. R., Possingham, H. P. & Watts, M. in Spatial Conservation Prioritisation: Quantitative Methods and Computational Tools (eds Moilanen, A., Wilson, K. A. & Possingham, H. P.) Ch. 14, 185–195 (Oxford Univ. Press, 2009).

  29. 29.

    Tscharntke, T., Klein, A. M., Kruess, A., Steffan-Dewenter, I. & Thies, C. Landscape perspectives on agricultural intensification and biodiversity - ecosystem service management. Ecol. Lett. 8, 857–874 (2005).

    Article  Google Scholar 

  30. 30.

    Fischer, M. et al. Implementing large-scale and long-term functional biodiversity research: the biodiversity exploratories. Basic Appl. Ecol. 11, 473–485 (2010).

    Article  Google Scholar 

  31. 31.

    Blüthgen, N. et al. A quantitative index of land-use intensity in grasslands: integrating mowing, grazing and fertilization. Basic Appl. Ecol. 13, 207–220 (2012).

    Article  Google Scholar 

  32. 32.

    Simons, N. K. et al. Resource-mediated indirect effects of grassland management on arthropod diversity. PLoS ONE 9, e107033 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Socher, S. A. et al. Direct and productivity-mediated indirect effects of fertilization, mowing and grazing on grassland species richness. J. Ecol. 100, 1391–1399 (2012).

    Article  Google Scholar 

  34. 34.

    Riehl, G. Ermittlung von Erträgen auf dem Grünland (Sächsisches Landesamt für Umwelt, Landwirtschaft und Geologie, 2001).

  35. 35.

    Mewes, M. Agrarökonomische Kostenberechnungen für Biodiversitätsschutzmaßnahmen Report No. 1436-140X (Helmholtz-Zentrum für Umweltforschung GmbH - UFZ, 2010).

  36. 36.

    R Core Team R: A Language and Environment for Statistical Computing v3.3.0 (R Foundation for Statistical Computing, 2016).

  37. 37.

    Bolker, B. & R Core Team Tools for General Maximum Likelihood Estimation Version 1.0.18 (2016).

  38. 38.

    Marler, R. T. & Arora, J. S. Survey of multi-objective optimization methods for engineering. Struct. Multidiscip. O. 26, 369–395 (2004).

    Article  Google Scholar 

  39. 39.

    Mersmann, O. mco: Multiple Criteria Optimization Algorithms and Related Functions (2014).

  40. 40.

    Deb, K., Pratap, A. & Agarwal, S. A fast and elitist multiobjective genetic algorithm: NSGAII. IEEE T. Evolut. Comput. 6, 182–197 (2002).

    Article  Google Scholar 

Download references

Acknowledgements

We thank T. Lewinsohn for his comments on an earlier draft of this publication. We thank S. Boch, J. Müller, E. Pašalić and S. A. Socher for conducting the plant biomass sampling and for providing the data online. We thank T. Husen for helpful comments on the implementation of the optimization algorithms. We also thank the managers of the three exploratories, K. Wels, S. Renner, S. Gockel, K. Wiesner, A. Hemp and M. Gorke for their work in maintaining the plot and project infrastructure; S. Pfeiffer, M. Gleisberg and C. Fischer for giving support through the central office, as well as J. Nieschulze and M. Owonibi for managing the central database. We also thank M. Fischer, E. Linsenmair, D. Hessenmöller, D. Prati, I. Schöning, F. Buscot, E.-D. Schulze and the late E. Kalko for their role in setting up the Biodiversity Exploratories project. The work was funded by the DFG Priority Program 1374 ‘Infrastructure-Biodiversity-Exploratories’ (DFG-WE 3081/21-1.). Fieldwork permits were issued by the responsible state environmental offices of Baden-Württemberg, Thüringen and Brandenburg (according to § 72 BbgNatSchG).

Author information

Affiliations

Authors

Contributions

N.K.S. and W.W.W. conceived the idea for the manuscript and defined the final outline. N.K.S. analysed the data and wrote the first manuscript draft. W.W.W. commented on all manuscript versions.

Corresponding author

Correspondence to Nadja K. Simons.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Information

One Supplementary Table, 12 Supplementary Figures, 3 Supplementary Methods and three sets of additional Supplementary Figures

Supplementary Data 1

Average productivity on the sampled grasslands over the years 2006–2012. Grasslands are located in three regions in Germany, indicated by the first three letters of the PlotID: AEG indicates grasslands located in the Schwäbische Alb, HEG indicates grasslands located in the Hainich-Dün, SEG indicates grasslands located in the Schorfheide Chorin. The PlotIDs correspond to the PlotIDs given in the other data files used in the current study (see ‘Data availability’). Further publicly available data from the study regions and grasslands can be found in the data repository of the Biodiversity Exploratories (https://www.bexis.uni-jena.de/PublicData/PublicData.aspx).

Supplementary Data 2

Results from the selected best model for abundance-productivity curves of each common arthropod species sampled in the Schwäbische Alb. SpeciesID indicates scientific species name, Best_model indicates selected best model based on the residual deviances of all tested models. Res_Dev gives the residual deviance. _Est indicates the parameter estimate, _SE indicates the parameters’ standard error: _z indicates the value of the z-statistic for each parameter and _p indicates the probability level from the z-statistic for each parameter. Missing values (because a parameter is not used in the respective model or because statistical tests could not be performed) are indicated by NA.

Supplementary Data 3

Results from the selected best model for abundance-productivity curves of each common arthropod species sampled in Hainich-Dün. SpeciesID indicates scientific species name, Best_model indicates selected best model based on the residual deviances of all tested models. Res_Dev gives the residual deviance. _Est indicates the parameter estimate, _SE indicates the parameters’ standard error: _z indicates the value of the z-statistic for each parameter and _p indicates the probability level from the z-statistic for each parameter. Missing values (because a parameter is not used in the respective model or because statistical tests could not be performed) are indicated by NA.

Supplementary Data 4

Results from the selected best model for abundance-productivity curves of each common arthropod species sampled in Schorfheide-Chorin. SpeciesID indicates scientific species name, Best_model indicates selected best model based on the residual deviances of all tested models. Res_Dev gives the residual deviance. _Est indicates the parameter estimate, _SE indicates the parameters’ standard error: _z indicates the value of the z-statistic for each parameter and _p indicates the probability level from the z-statistic for each parameter. Missing values (because a parameter is not used in the respective model or because statistical tests could not be performed) are indicated by NA.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Simons, N.K., Weisser, W.W. Agricultural intensification without biodiversity loss is possible in grassland landscapes. Nat Ecol Evol 1, 1136–1145 (2017). https://doi.org/10.1038/s41559-017-0227-2

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing