Article | Published:

Negative density dependence mediates biodiversity–productivity relationships across scales

Nature Ecology & Evolutionvolume 1pages11071115 (2017) | Download Citation


Regional species diversity generally increases with primary productivity whereas local diversity–productivity relationships are highly variable. This scale-dependence of the biodiversity–productivity relationship highlights the importance of understanding the mechanisms that govern variation in species composition among local communities, which is known as β-diversity. Hypotheses to explain changes in β-diversity with productivity invoke multiple mechanisms operating at local and regional scales, but the relative importance of these mechanisms is unknown. Here we show that changes in the strength of local density-dependent interactions within and among tree species explain changes in β-diversity across a subcontinental-productivity gradient. Stronger conspecific relative to heterospecific negative density dependence in more productive regions was associated with higher local diversity, weaker habitat partitioning (less species sorting), and homogenization of community composition among sites (lower β-diversity). Regional processes associated with changes in species pools had limited effects on β-diversity. Our study suggests that systematic shifts in the strength of local interactions within and among species might generally contribute to some of the most prominent but poorly understood gradients in global biodiversity.

  • Subscribe to Nature Ecology & Evolution for full access:



Additional access options:

Already a subscriber?  Log in  now or  Register  for online access.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Hutchinson, G. E. Homage to Santa Rosalia or why are there so many kinds of animals? Am. Nat. 93, 145–159 (1959).

  2. 2.

    Mittelbach, G. G. et al. What is the observed relationship between species richness and productivity? Ecology 82, 2381–2396 (2001).

  3. 3.

    Chase, J. M. & Leibold, M. A. Spatial scale dictates the productivity–biodiversity relationship. Nature 416, 427–430 (2002).

  4. 4.

    Chase, J. M. Stochastic community assembly causes higher biodiversity in more productive environments. Science 328, 1388–1391 (2010).

  5. 5.

    Adler, P. B. et al. Productivity is a poor predictor of plant species richness. Science 333, 1750–1753 (2011).

  6. 6.

    Fraser, L. H. et al. Worldwide evidence of a unimodal relationship between productivity and plant species richness. Science 349, 302–305 (2015).

  7. 7.

    Currie, D. J. & Paquin, V. Large-scale biogeographical patterns of species richness of trees. Nature 329, 326–327 (1987).

  8. 8.

    Gaston, K. J. Global patterns in biodiversity. Nature 405, 220–227 (2000).

  9. 9.

    Abramsky, Z. & Rosenzweig, M. L. Tilman’s predicted productivity–diversity relationship shown by desert rodents. Nature 309, 150–151 (1984).

  10. 10.

    Abrams, P. A. Monotonic or unimodal diversity–productivity gradients: what does competition theory predict? Ecology 76, 2019–2027 (1995).

  11. 11.

    Harrison, S., Davies, K. F., Safford, H. D. & Viers, J. H. Beta diversity and the scale-dependence of the productivity–diversity relationship: a test in the Californian serpentine flora. J. Ecol. 94, 110–117 (2006).

  12. 12.

    He, K. & Zhang, J. Testing the correlation between beta diversity and differences in productivity among global ecoregions, biomes, and biogeographical realms. Ecol. Inform. 4, 93–98 (2009).

  13. 13.

    Harrison, S., Vellend, M. & Damschen, E. I. ‘Structured’ beta diversity increases with climatic productivity in a classic dataset. Ecosphere 2, 1–13 (2011).

  14. 14.

    Andrew, M. E., Wulder, M. A., Coops, N. C. & Baillargeon, G. Beta-diversity gradients of butterflies along productivity axes. Global Ecol. Biogeogr. 21, 352–364 (2012).

  15. 15.

    Bonn, A., Storch, D. & Gaston, K. J. Structure of the species–energy relationship. Proc. R. Soc. Lond. B 271, 1685–1691 (2004).

  16. 16.

    Chalcraft, D. R., Williams, J. W., Smith, M. D. & Willig, M. R. Scale dependence in the species-richness–productivity relationship: the role of species turnover. Ecology 85, 2701–2708 (2004).

  17. 17.

    Gaston, K. J. et al. Spatial turnover in the global avifauna. Proc. R. Soc. B. 274, 1567–1574 (2007).

  18. 18.

    Chalcraft, D. R. et al. Scale-dependent responses of plant biodiversity to nitrogen enrichment. Ecology 89, 2165–2171 (2008).

  19. 19.

    Stegen, J. C. et al. Stochastic and deterministic drivers of spatial and temporal turnover in breeding bird communities. Glob. Ecol. Biogeogr. 22, 202–212 (2013).

  20. 20.

    Melillo, J. M. et al. Global climate change and terrestrial net primary production. Nature 363, 234–240 (1993).

  21. 21.

    Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).

  22. 22.

    Kraft, N. J. et al. Disentangling the drivers of β diversity along latitudinal and elevational gradients. Science 333, 1755–1758 (2011).

  23. 23.

    Ricklefs, R. E. Environmental heterogeneity and plant species diversity: a hypothesis. Am. Nat. 111, 376–381 (1977).

  24. 24.

    Pastor, J., Downing, A. & Erickson, H. E. Species–area curves and diversity–productivity relationships in beaver meadows of Voyageurs National Park, Minnesota, USA. Oikos 77, 399–406 (1996).

  25. 25.

    Veech, J. A. & Crist, T. O. Habitat and climate heterogeneity maintain beta-diversity of birds among landscapes within ecoregions. Glob. Ecol. Biogeogr. 16, 650–656 (2007).

  26. 26.

    MacArthur, R. & Levins, R. The limiting similarity, convergence, and divergence of coexisting species. Am. Nat. 101, 377–385 (1967).

  27. 27.

    Holt, R. D. Spatial heterogeneity, indirect interactions, and the coexistence of prey species. Am. Nat. 124, 377–406 (1984).

  28. 28.

    Tilman, D. & Pacala, S. in Species Diversity in Ecological Communities (eds Ricklefs, R. E. & Schluter, D.) Ch. 2 (Univ. Chicago Press, 1993).

  29. 29.

    Loreau, M. Are communities saturated? On the relationship between α, β and γ diversity. Ecol. Lett. 3, 73–76 (2000).

  30. 30.

    Terborgh, J. W. Toward a trophic theory of species diversity. Proc. Natl Acad. Sci. USA 112, 11415–11422 (2015).

  31. 31.

    Al-Mufti, M. M., Sydes, C. L., Furness, S. B., Grime, J. P. & Band, S. R. A quantitative analysis of shoot phenology and dominance in herbaceous vegetation. J. Ecol. 65, 759–791 (1977).

  32. 32.

    Stevens, C. J., Dise, N. B., Mountford, J. O. & Gowing, D. J. Impact of nitrogen deposition on the species richness of grasslands. Science 303, 1876–1879 (2004).

  33. 33.

    Suding, K. N. et al. Functional- and abundance-based mechanisms explain diversity loss due to N fertilization. Proc. Natl Acad. Sci. USA 102, 4387–4392 (2005).

  34. 34.

    Mangan, S. A. et al. Negative plant–soil feedback predicts tree-species relative abundance in a tropical forest. Nature 466, 752–755 (2010).

  35. 35.

    Bagchi, R. et al. Pathogens and insect herbivores drive rainforest plant diversity and composition. Nature 506, 85–88 (2014).

  36. 36.

    Comita, L. S. et al. Testing predictions of the Janzen–Connell hypothesis: a meta-analysis of experimental evidence for distance- and density-dependent seed and seedling survival. J. Ecol. 102, 845–856 (2014).

  37. 37.

    Bever, J. D., Mangan, S. A. & Alexander, H. M. Maintenance of plant species diversity by pathogens. Annu. Rev. Ecol. Evol. Syst. 46, 305–325 (2015).

  38. 38.

    Janzen, D. H. Herbivores and the number of tree species in tropical forests. Am. Nat. 104, 501–528 (1970).

  39. 39.

    Connell, J. H. in Dynamics of Populations (eds den Boer, P. J. & Gradwell, G. R.) 298–312 (Centre for Agricultural Publishing and Documentation, Wageningen, The Netherlands, 1971).

  40. 40.

    Harms, K. E., Wright, S. J., Calderón, O., Hernández, A. & Herre, E. A. Pervasive density-dependent recruitment enhances seedling diversity in a tropical forest. Nature 404, 493–495 (2000).

  41. 41.

    Johnson, D. J., Beaulieu, W. T., Bever, J. D. & Clay, K. Conspecific negative density dependence and forest diversity. Science 336, 904–907 (2012).

  42. 42.

    LaManna, J. A., Walton, M. L., Turner, B. L. & Myers, J. A. Negative density dependence is stronger in resource-rich environments and diversifies communities when stronger for common but not rare species. Ecol. Lett. 19, 657–667 (2016).

  43. 43.

    Givnish, T. J. On the causes of gradients in tropical tree diversity. J. Ecol. 87, 193–210 (1999).

  44. 44.

    O’Connell, B. M. et al. The Forest Inventory and Analysis Database: Database Description and User Guide for Phase 2 version 6.0.2 (USDA Forest Service, 2015).

  45. 45.

    Qian, H. & Ricklefs, R. E. A latitudinal gradient in large-scale beta diversity for vascular plants in North America. Ecol. Lett. 10, 737–744 (2007).

  46. 46.

    Chase, J. M. & Knight, T. M. Scale-dependent effect sizes of ecological drivers on biodiversity: why standardised sampling is not enough. Ecol. Lett. 16, 17–26 (2013).

  47. 47.

    Fine, P. V., Mesones, I. & Coley, P. D. Herbivores promote habitat specialization by trees in Amazonian forests. Science 305, 663–665 (2004).

  48. 48.

    Ricklefs, R. E. Intrinsic dynamics of the regional community. Ecol. Lett. 18, 497–503 (2015).

  49. 49.

    Ricklefs, R. E. & He, F. Region effects influence local tree species diversity. Proc. Natl Acad. Sci. USA 113, 674–679 (2016).

  50. 50.

    Burkle, L. A., Myers, J. A. & Belote, R. T. Wildfire disturbance and productivity as drivers of plant species diversity across spatial scales. Ecosphere 6, 1–14 (2015).

  51. 51.

    Comes, H. P. & Kadereit, J. W. The effect of Quaternary climatic changes on plant distribution and evolution. Trends Plant Sci. 3, 432–438 (1998).

  52. 52.

    Jaramillo-Correa, J. P., Beaulieu, J., Khasa, D. P. & Bousquet, J. Inferring the past from the present phylogeographic structure of North American forest trees: seeing the forest for the genes. Can. J. For. Res. 39, 286–307 (2009).

  53. 53.

    McNab, W. H. et al. Description of Ecological Subregions: Sections of the Conterminous United States (US Department of Agriculture, Forest Service, 2007).

  54. 54.

    Amundsen, R., Harden, J. & Singer, M. (eds) Factors of Soil Formation: a Fiftieth Anniversary Perspective (Soil Science Society of America, 1994).

  55. 55.

    Zhao, M. & Running, S. W. Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science 329, 940–943 (2010).

  56. 56.

    Wang, T., Hamann, A., Spittlehouse, D. & Carroll, C. Locally downscaled and spatially customizable climate data for historical and future periods for North America. PloS ONE 11, e0156720 (2016).

  57. 57.

    Zhu, K., Woodall, C. W., Monteiro, J. V. & Clark, J. S. Prevalence and strength of density-dependent tree recruitment. Ecology 96, 2319–2327 (2015).

  58. 58.

    Magurran, A. E. Measuring Biological Diversity (Blackwell, 2004).

  59. 59.

    R Core Team. R: A language and environment for statistical computing version 3.2.0 (2015).

  60. 60.

    Oksanen, J. et al. Vegan: Community Ecology Package. R package version 2.2-1 (2015).

  61. 61.

    Anderson, M. J. et al. Navigating the multiple meanings of β diversity: a roadmap for the practicing ecologist. Ecol. Lett. 14, 19–28 (2011).

  62. 62.

    Eskelinen, A. & Harrison, S. Erosion of beta diversity under interacting global change impacts in a semi-arid grassland. J. Ecol. 103, 397–407 (2015).

  63. 63.

    Jost, L. Partitioning diversity into independent alpha and beta components. Ecology 88, 2427–2439 (2007).

  64. 64.

    Myers, J. A. et al. Beta-diversity in temperate and tropical forests reflects dissimilar mechanisms of community assembly. Ecol. Lett. 16, 151–157 (2013).

  65. 65.

    Tucker, C. M., Shoemaker, L. G., Davies, K. F., Nemergut, D. R. & Melbourne, B. A. Differentiating between niche and neutral assembly in metacommunities using null models of β-diversity. Oikos 125,, 778–789 (2016).

  66. 66.

    Dolédec, S., Chessel, D. & Gimaret-Carpentier, C. Niche separation in community analysis: a new method. Ecology 81, 2914–2927 (2000).

  67. 67.

    Schielzeth, H. & Forstmeier, W. Conclusions beyond support: overconfident estimates in mixed models. Behav. Ecol. 20, 416–420 (2009).

  68. 68.

    Barr, D. J., Levy, R., Scheepers, C. & Tily, H. J. Random effects structure for confirmatory hypothesis testing: keep it maximal. J. Mem. Lang. 68, 255–278 (2013).

  69. 69.

    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

  70. 70.

    Wright, J. S. Plant diversity in tropical forests: a review of mechanisms of species coexistence. Oecologia 130, 1–14 (2002).

  71. 71.

    Paine, C. E. T., Harms, K. E., Schnitzer, S. A. & Carson, W. P. Weak competition among tropical tree seedlings: implications for species coexistence. Biotropica 40, 432–440 (2008).

  72. 72.

    Hubbell, S. P., Ahumada, J. A., Condit, R. & Foster, R. B. Local neighborhood effects on long-term survival of individual trees in a neotropical forest. Ecol. Res. 16, 859–875 (2001).

  73. 73.

    Johnson, D. J. et al. Conspecific negative density-dependent mortality and the structure of temperate forests. Ecology 95, 2493–2503 (2014).

Download references


We thank I. Jiménez, S. Tello and D. Vela for helpful comments; and the Forest Inventory and Analysis project. This work was supported by National Science Foundation grants DEB 1256788 and 1557094 (to J.A.M.) and DEB 1256819 (to L.A.B. and R.T.B.).

Author information


  1. Department of Biology & Tyson Research Center, Washington University in St. Louis, St. Louis, MO, 63130, USA

    • Joseph A. LaManna
    • , Christopher P. Catano
    •  & Jonathan A. Myers
  2. The Wilderness Society, Bozeman, MT, 59717, USA

    • R. Travis Belote
  3. Department of Ecology, Montana State University, Bozeman, MT, 59717, USA

    • Laura A. Burkle


  1. Search for Joseph A. LaManna in:

  2. Search for R. Travis Belote in:

  3. Search for Laura A. Burkle in:

  4. Search for Christopher P. Catano in:

  5. Search for Jonathan A. Myers in:


J.A.L., J.A.M., L.A.B. and R.T.B. conceived the study. J.A.M., L.A.B. and R.T.B. obtained the funding. J.A.L. executed the statistical analyses and wrote the first draft of the manuscript, and J.A.L., J.A.M., R.T.B., L.A.B. and C.P.C. contributed to revisions.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Joseph A. LaManna.

Electronic supplementary material

  1. NATECOLEVOL-16080479 Supplementary Information

    Supplementary Tables 1–3, Supplementary Figures 1–7

About this article

Publication history





Rights and permissions

To obtain permission to re-use content from this article visit RightsLink.