Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

General ecological models for human subsistence, health and poverty

Abstract

The world’s rural poor rely heavily on their immediate natural environment for subsistence and suffer high rates of morbidity and mortality from infectious diseases. We present a general framework for modelling subsistence and health of the rural poor by coupling simple dynamic models of population ecology with those for economic growth. The models show that feedbacks between the biological and economic systems can lead to a state of persistent poverty. Analyses of a wide range of specific systems under alternative assumptions show the existence of three possible regimes corresponding to a globally stable development equilibrium, a globally stable poverty equilibrium and bistability. Bistability consistently emerges as a property of generalized disease–economic systems for about a fifth of the feasible parameter space. The overall proportion of parameters leading to poverty is larger than that resulting in healthy/wealthy development. All the systems are found to be most sensitive to human disease parameters. The framework highlights feedbacks, processes and parameters that are important to measure in studies of rural poverty to identify effective pathways towards sustainable development.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematics of the coupled disease–economic model.
Figure 2: Phase and bifurcation diagrams for the coupled systems in Table 2.
Figure 3: Development regimes and important parameters.

References

  1. UN General Assembly United Nations Millenium Declaration (UN, 2000).

  2. World Bank World Bank Annual Report 2014 (MIT Press, 2014).

  3. Rural Poverty Report (IFAD, 2000).

  4. Lozano, R. et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the global burden of disease study 2010. Lancet 380, 2095–2128 (2013).

    Article  Google Scholar 

  5. Whitmee, S. et al. Safeguarding human health in the Anthropocene epoch: report of The Rockefeller Foundation–Lancet Commission on planetary health. Lancet 386, 1973–2028 (2015).

    Article  PubMed  Google Scholar 

  6. Assessment, M. E. Ecosystems and Human Well-Being: Wetlands and Water (World Resources Institute, 2005).

  7. Dasgupta, P. Human Well-Being and the Natural Environment (Oxford Univ. Press, 2001).

  8. Bonds, M. H., Dobson, A. P. & Keenan, D. C. Disease ecology, biodiversity, and the latitudinal gradient in income. PLoS Biol. 10, e1001456 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sachs, J. et al. Ending Africa’s poverty trap. Brookings Pap. Eco. Ac. 2004, 117–240 (2004).

    Article  Google Scholar 

  10. Bonds, M., Keenan, D., Rohani, P. & Sachs, J. Poverty trap formed by the ecology of infectious diseases. Proc. R. Soc. B 277, 1185–1192 (2010).

    Article  PubMed  Google Scholar 

  11. Ngonghala, C. N. et al. Poverty, disease, and the ecology of complex systems. PLoS Biol. 12, e1001827 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Solow, R. A contribution to the theory of economic growth. Q. J. Econ. 70, 65–94 (1956).

    Article  Google Scholar 

  13. Azariadis, C. & Stachurski, J. in Handbook of Economic Growth Vol. 1A (eds Aghion, P. & Durlauf, S.) 295–384 (North Holland, 2005).

  14. Schaible, U. E. & Stefan, H. Malnutrition and infection: complex mechanisms and global impacts. PLoS Med. 4, e115 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Dasgupta, P. Nutritional status, the capacity for work, and poverty traps. J. Econometrics 77, 5–37 (1997).

    Article  Google Scholar 

  16. Alsan, M. M., Westerhaus, M., Herce, M., Nakashima, K. & Farmer, P. E. Poverty, global health, and infectious disease: lessons from Haiti and Rwanda. Infect. Dis. Clin. N. Am. 25, 611–622 (2011).

    Article  Google Scholar 

  17. Barro, R. & Sala-i Martin, X. Economic Growth (MIT Press, 1999).

  18. Gurney, W. & Nisbet, R. M. Ecological Dynamics (Oxford Univ. Press, 1998).

  19. Becker, G. S. Health as human capital: synthesis and extensions. Oxford Econ. Pap. 59, 379–410 (2007).

    Article  Google Scholar 

  20. Gyimah-Brempong, K. & Wilson, M. Health human capital and economic growth in sub- Saharan African and OECD countries. Q. Rev. Econ. Finance 44, 296–320 (2004).

    Article  Google Scholar 

  21. Raffel, T. R., Martin, L. B. & Rohr, J. R. Parasites as predators: unifying natural enemy ecology. Trends Ecol. Evol. 23, 610–618 (2008).

    Article  PubMed  Google Scholar 

  22. Lafferty, K. D. et al. A general consumer–resource population model. Science 349, 854–857 (2015).

    Article  CAS  PubMed  Google Scholar 

  23. Anderson, R. & May, R. Infectious Diseases of Humans: Dynamics and Control (Oxford Univ. Press, 1992).

  24. Smith, H. L. Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems (Mathematical Surveys and Monographs Vol. 41, American Mathematical Society, 2008).

  25. Marino, S., Hogue, I., Ray, C. & Kirschner, D. A methodology for performing global uncertainty and sensitivity analysis in systems biology. J. Theor. Biol. 254, 178–196 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Barrett, C. B., Travis, A. J. & Dasgupta, P. On biodiversity conservation and poverty traps. Proc. Natl Acad. Sci. USA 108, 13907–13912 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sachs, J. End of Poverty: Economic Possibilities of Our Time (Penguin, 2005).

  28. Bloom, D. E., Canning, D. & Sevilla, J. The effect of health on economic growth: a production function approach. World Dev. 32, 1–13 (2004).

    Article  Google Scholar 

  29. Farmer, P. E. et al. Reduced premature mortality in Rwanda: lessons from success. BMJ 346, f65 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Binagwaho, A. et al. Rwanda 20 years on: investing in life. Lancet 384, 371–375 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Plucinski, M., Ngonghala, C. & Bonds, M. H. Health safety nets can break cycles of poverty and disease: a stochastic ecological model. J. R. Soc. Interface 8, 1796–1803 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Noy-Meir, I. Stability of grazing systems: an application of predator–prey graphs. J. Ecol. 63, 459–481 (1975).

    Article  Google Scholar 

  33. Rietkerk, M. & Van de Koppel, J. Alternate stable states and threshold effects in semi-arid grazing systems. Oikos 79, 69–76 (1997).

    Article  Google Scholar 

  34. van de Koppel, J., Rietkerk, M. & Weissing, F. J. Catastrophic vegetation shifts and soil degradation in terrestrial grazing systems. Trends Ecol. Evol. 12, 352–356 (1997).

    Article  PubMed  Google Scholar 

  35. Hillier, J. G. & Birch, A. N. E. A bi-trophic mathematical model for pest adaptation to a resistant crop. J. Theor. Biol. 215, 305–319 (2002).

    Article  PubMed  Google Scholar 

  36. Bailey, T. J. N. The Mathematical Theory of Infectious Diseases and its Application 2nd edn (Griffin, 1975).

  37. Hethcote, H. Qualitative analyses of communicable disease models. Math. Biosci. 28, 335–356 (1976).

    Article  Google Scholar 

  38. Keeling, M. J. & Rohani, P. Modelling Infectious Diseases (Princeton Univ. Press, 2007).

Download references

Acknowledgements

This work benefited from the working group ‘Land use change and infectious diseases’ conducted both at the National Socio-Environmental Synthesis Center (funded from NSF DBI-1052875) and the National Center for Ecological Analysis and Synthesis (funded by the University of California, Santa Barbara and the state of California). We are grateful to both centres for providing excellent interactive venues to discuss some of the analysis and results of the models, and to other members of the working group for their valuable feedback. A.P.D. and M.M.P. acknowledge SFI. M.H.B. and C.N.N. are supported by NIH grant 5K01TW008773-06 from Fogarty International Center and a Scholar Award in Complex Systems Science from the James S. McDonnell Foundation to M.H.B. G.A.D.L. was supported by the National Science Foundation (CNH grant no. 1414102), NIH grants (R01GM109499, R01TW010286), the Bill and Melinda Gates Foundation, Stanford GDP SEED (grant no. 1183573-100-GDPAO) and the SNAP-NCEAS-supported working group ‘Ecological levers for health: advancing a priority agenda for disease ecology and planetary health in the 21st century’. We thank S. and V. Della Pietras for helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

C.N.N. and M.H.B. conceived the paper, C.N.N. conducted analysis. All authors performed research and wrote the paper.

Corresponding author

Correspondence to Calistus N. Ngonghala.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Information

Details of the models used in the analysis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ngonghala, C.N., De Leo, G.A., Pascual, M.M. et al. General ecological models for human subsistence, health and poverty. Nat Ecol Evol 1, 1153–1159 (2017). https://doi.org/10.1038/s41559-017-0221-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-017-0221-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing