Recent human history governs global ant invasion dynamics

Abstract

Human trade and travel are breaking down biogeographic barriers, resulting in shifts in the geographical distribution of organisms, yet it remains largely unknown whether different alien species generally follow similar spatiotemporal colonization patterns and how such patterns are driven by trends in global trade. Here, we analyse the global distribution of 241 alien ant species and show that these species comprise four distinct groups that inherently differ in their worldwide distribution from that of native species. The global spread of these four distinct species groups has been greatly, but differentially, influenced by major events in recent human history, in particular historical waves of globalization (approximately 1850–1914 and 1960 to present), world wars and global recessions. Species in these four groups also differ in six important morphological and life-history traits and their degree of invasiveness. Combining spatiotemporal distribution data with life-history trait information provides valuable insight into the processes driving biological invasions and facilitates identification of species most likely to become invasive in the future.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Global spread of alien ants.
Figure 2: Temporal colonization dynamics.
Figure 3: Spatiotemporal trajectories.
Figure 4: Morphological and life-history traits.

References

  1. 1

    Capinha, C., Essl, F., Seebens, H., Moser, D. & Pereira, H. M. The dispersal of alien species redefines biogeography in the Anthropocene. Science 348, 1248–1251 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  2. 2

    Corlett, R. T. The Anthropocene concept in ecology and conservation. Trends Ecol. Evol. 30, 36–41 (2015).

    PubMed  Article  PubMed Central  Google Scholar 

  3. 3

    Simberloff, D. et al. Impacts of biological invasions — what’s what and the way forward. Trends Ecol. Evol. 28, 58–66 (2013).

    PubMed  Article  PubMed Central  Google Scholar 

  4. 4

    Essl, F. et al. Socioeconomic legacy yields an invasion debt. Proc. Natl Acad. Sci. USA 108, 203–207 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  5. 5

    Hulme, P. E. Trade, transport and trouble: managing invasive species pathways in an era of globalization. J. Appl. Ecol. 46, 10–18 (2009).

    Article  Google Scholar 

  6. 6

    Ascunce, M. S. et al. Global invasion history of the fire ant Solenopsis invicta. Science 331, 1066–1068 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  7. 7

    Van Kleunen, M. et al. Global exchange and accumulation of non-native plants. Nature 525, 100–103 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  8. 8

    Pyšek, P. et al. Disentangling the role of environmental and human pressures on biological invasions across Europe. Proc. Natl Acad. Sci. USA 107, 12157–12162 (2010).

    PubMed  Article  PubMed Central  Google Scholar 

  9. 9

    Westphal, M. I., Browne, M., MacKinnon, K. & Noble, I. The link between international trade and the global distribution of invasive alien species. Biol. Invasions 10, 391–398 (2008).

    Article  Google Scholar 

  10. 10

    Hölldobler, B. & Wilson, E. The Ants (Harvard Univ. Press, 1990).

    Google Scholar 

  11. 11

    Suarez, A. V., Holway, D. A. & Case, T. J. Patterns of spread in biological invasions dominated by long-distance jump dispersal: insights from Argentine ants. Proc. Natl Acad. Sci. USA 98, 1095–1100 (2001).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  12. 12

    Rabitsch, W. The hitchhiker’s guide to alien ant invasions. BioControl 56, 551–572 (2011).

    Article  Google Scholar 

  13. 13

    Holway, D. A. et al. The causes and consequences of ant invasions. Annu. Rev. Ecol. Syst. 33, 181–233 (2002).

    Article  Google Scholar 

  14. 14

    Sanders, N. J., Gotelli, N. J., Heller, N. E. & Gordon, D. M. Community disassembly by an invasive species. Proc. Natl Acad. Sci. USA 100, 2474–2477 (2003).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  15. 15

    Passera, L. in Exotic Ants: Biology, Impact and Control of Introduced Species (ed. Williams, D. ) 23–43 (Westview, 1994).

    Google Scholar 

  16. 16

    Rao, C. Diversity and dissimilarity coefficients: a unified approach. Theor. Popul. Biol. 21, 24–43 (1982).

    Article  Google Scholar 

  17. 17

    World Trade Report 2014 (World Trade Organization, 2014).

  18. 18

    Baldwin, R. & Martin, P. Two Waves of Globalisation: Superficial Similarities, Fundamental Differences (National Bureau of Economic Research, 1999).

    Google Scholar 

  19. 19

    Cazelles, B. et al. Wavelet analysis of ecological time series. Oecologia 156, 287–304 (2008).

    PubMed  Article  PubMed Central  Google Scholar 

  20. 20

    Seebens, H. et al. No saturation in the accumulation of alien species worldwide. Nat. Commun. 8, 14435 (2017).

  21. 21

    Arim, M., Abades, S. R., Neill, P. E., Lima, M. & Marquet, P. A. Spread dynamics of invasive species. Proc. Natl Acad. Sci. USA 103, 374–378 (2006).

    CAS  PubMed  Article  Google Scholar 

  22. 22

    Jeschke, J. M. & Strayer, D. L. Invasion success of vertebrates in Europe and North America. Proc. Natl Acad. Sci. USA 102, 7198–7202 (2005).

    CAS  PubMed  Article  Google Scholar 

  23. 23

    Banks, N. C., Paini, D. R., Bayliss, K. L. & Hodda, M. The role of global trade and transport network topology in the human-mediated dispersal of alien species. Ecol. Lett. 18, 188–199 (2015).

    PubMed  Article  Google Scholar 

  24. 24

    Liebhold, A. M., Brockerhoff, E. G., Garrett, L. J., Parke, J. L. & Britton, K. O. Live plant imports: the major pathway for forest insect and pathogen invasions of the US. Front. Ecol. Environ. 10, 135–143 (2012).

    Article  Google Scholar 

  25. 25

    Levine, J. M. & D’Antonio, C. M. Forecasting biological invasions with increasing international trade. Conserv. Biol. 17, 322–326 (2003).

    Article  Google Scholar 

  26. 26

    Bertelsmeier, C., Luque, G. M., Confais, A. & Courchamp, F. Ant Profiler — a database of ecological characteristics of ants (Hymenoptera: Formicidae). Myrmecol. News 18, 73–76 (2013).

    Google Scholar 

  27. 27

    McGlynn, T. P. Non-native ants are smaller than related native ants. Am. Nat. 154, 690–699 (1999).

    PubMed  Article  PubMed Central  Google Scholar 

  28. 28

    Pitt, J. P. W., Worner, S. P. & Suarez, A. V. Predicting Argentine ant spread over the heterogeneous landscape using a spatially explicit stochastic model. Ecol. Appl. 19, 1176–1186 (2012).

    Article  Google Scholar 

  29. 29

    Hayes, K. R. & Barry, S. C. Are there any consistent predictors of invasion success? Biol. Invasions 10, 483–506 (2008).

    Article  Google Scholar 

  30. 30

    Carboni, M. et al. What it takes to invade grassland ecosystems: traits, introduction history and filtering processes. Ecol. Lett. 19, 219–229 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  31. 31

    Sol, D. et al. Unraveling the life history of successful invaders. Science 337, 580–583 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  32. 32

    Allen, W. L., Street, S. E. & Capellini, I. Fast life history traits promote invasion success in amphibians and reptiles. Ecol. Lett. 20, 220–230 (2017).

    Article  Google Scholar 

  33. 33

    Davis, M. Invasion Biology (Oxford Univ. Press, 2009).

    Google Scholar 

  34. 34

    Dyer, E. E. et al. The global distribution and drivers of alien bird species introduction and richness. PLoS Biol. 15, 942–942 (2017).

    Article  CAS  Google Scholar 

  35. 35

    Roques, A. et al. Temporal and interspecific variation in rates of spread for insect species invading Europe during the last 200 years. Biol. Invasions 18, 907–920 (2016).

    Article  Google Scholar 

  36. 36

    Brenton-Rule, E. C. et al. Corruption, development and governance indicators predict invasive species risk from trade. Proc. Biol. Sci. 283, 20160901 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  37. 37

    Rouget, M. et al. Invasion debt — quantifying future biological invasions. Divers. Distrib. 22, 445–456 (2015).

    Article  Google Scholar 

  38. 38

    Wittenborn, D. & Jeschke, J. M. Characteristics of exotic ants in North America. NeoBiota 64, 47–64 (2011).

    Google Scholar 

  39. 39

    McGlynn, T. P. The worldwide transfer of ants: geographical distribution and ecological invasions. J. Biogeogr. 26, 535–548 (1999).

    Article  Google Scholar 

  40. 40

    Bolton, B ., Alpert, G ., Ward, P. S & Naskrecki, P. Bolton’s Catalogue of the Ants of the World (Harvard Univ. Press, 2007).

    Google Scholar 

  41. 41

    Ward, D. F., Rees, J., Harris, R. J. & Stanley, M. C. New Zealand Ant Distribution Database v.2.0 (Landcare Research, 2016); http://www.landcareresearch.co.nz/research/biocons/invertebrates/ants/distribution

  42. 42

    Deyrup, M., Davis, L. & Cover, S. Exotic ants in Florida. Trans. Am. Entomol. Soc. 126, 293–326 (2000).

    Google Scholar 

  43. 43

    Martin, P., Mayer, T. & Thoenig, M. Make trade not war? Rev. Econ. Stud. 75, 865–900 (2008).

    Article  Google Scholar 

  44. 44

    Audigier, V., Husson, F. & Josse, J. A principal component method to impute missing values for mixed data. Adv. Data Anal. Classif. 10, 5–26 (2016).

    Article  Google Scholar 

  45. 45

    Sinnott, R. Virtues of the haversine. Sky Telescope 68, 159 (1984).

    Google Scholar 

  46. 46

    Hennig, C. Cluster-wise assessment of cluster stability. Comput. Stat. Data Anal. 52, 258–271 (2007).

    Article  Google Scholar 

  47. 47

    R: A language and environment for statistical computing v.3.1.1 (R Foundation for Statistical Computing, 2014).

Download references

Acknowledgements

We thank M. Chapuisat, P. Christe, P. Lester, J. Pannell, J. Søe Pedersen, I. Sanders and C. Wedekind for their comments, and A. Suarez, E. Robinson and J. Longino for supplying data on morphological and life-history traits. This work was supported by several grants from the Swiss National Science Foundation and a European Research Council advanced grant. Data reported in the paper are presented in the Supplementary materials.

Author information

Affiliations

Authors

Contributions

C.B. and L.K. designed the study, C.B. and A.L. collected the data, C.B. and S.O. analysed the data and all authors discussed the analyses and wrote the paper.

Corresponding authors

Correspondence to Cleo Bertelsmeier or Laurent Keller.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Four Supplementary Figures, two Supplementary Tables, and Supplementary Notes detailing the calculation of historical transition rates among dispersion stages (PDF 22540 kb)

Supplementary Dataset 1

An R object containing all data used in analyses. (ZIP 1808 kb)

Supplementary Dataset 2

An R script with code for all analyses and figures. (ZIP 9 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bertelsmeier, C., Ollier, S., Liebhold, A. et al. Recent human history governs global ant invasion dynamics. Nat Ecol Evol 1, 0184 (2017). https://doi.org/10.1038/s41559-017-0184

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing