Dispersal governs the reorganization of ecological networks under environmental change


Ecological networks, such as food webs, mutualist webs and host–parasite webs, are reorganizing as species abundances and spatial distributions shift in response to environmental change. Current theoretical expectations for how this reorganization will occur are available for competition or for parts of interaction networks, but these may not extend to more complex networks. Here we use metacommunity theory to develop new expectations for how complex networks will reorganize under environmental change, and show that dispersal is crucial for determining the degree to which networks will retain their composition and structure. When dispersal between habitat patches is low, all types of species interactions act as a strong determinant for whether species can colonize suitable habitats. This colonization resistance drives species turnover, which breaks apart current networks and leads to the formation of new networks. However, when dispersal rates are increased, colonists arrive in high abundance in habitats where they are well adapted, so interactions with resident species contribute less to colonization success. Dispersal ensures that species associations are maintained as they shift in space, so networks retain similar composition and structure. The crucial role of dispersal reinforces the need to manage habitat connectivity to sustain species and interaction diversity into the future.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Reorganization of ecological networks over the range of dispersal rates (0.0005–0.1).
Figure 2: Mean network dissimilarity and interspecific variation in the rate at which species shift their distributions, across the range of dispersal rates.
Figure 3: Mean network dissimilarity from interaction gains and losses in the four community types and for the different interaction types in the food web communities.
Figure 4: The mean proportion of the network properties in each final species interaction network compared to its most compositionally similar pre-change network.
Figure 5: Heatmaps indicating change in link density through space and time in competitive, mixed, and food-web networks (rows) over the range of dispersal rates (0.0005–0.1; columns).


  1. 1

    Bascompte, J. Disentangling the web of life. Science 325, 416–419 (2009).

    CAS  Article  Google Scholar 

  2. 2

    Woodward, G., Benstead, J. P. & Beveridge, O. S. Ecological networks in a changing climate. Adv. Ecol. Res. 42, 71–138 (2010).

    Article  Google Scholar 

  3. 3

    Tylianakis, J. M., Didham, R. K., Bascompte, J. & Wardle, D. A. Global change and species interactions in terrestrial ecosystems. Ecol. Lett. 11, 1351–1363 (2008).

    Article  Google Scholar 

  4. 4

    Thebault, E. & Fontaine, C. Stability of ecological communities and the architecture of mutualistic and trophic networks. Science 329, 853–856 (2010).

    CAS  Article  Google Scholar 

  5. 5

    Dunne, J. A., Williams, R. J. & Martinez, N. D. Network structure and biodiversity loss in food webs: robustness increases with connectance. Ecol. Lett. 5, 558–567 (2002).

    Article  Google Scholar 

  6. 6

    Daskalov, G. M. et al. Architecture of collapse: regime shift and recovery in an hierarchically structured marine ecosystem. Glob. Chang. Biol. 23, 1486–1498 (2017).

    Article  Google Scholar 

  7. 7

    Poisot, T., Stouffer, D. B. & Gravel, D. Beyond species: why ecological interaction networks vary through space and time. Oikos 124, 243–251 (2015).

    Article  Google Scholar 

  8. 8

    Walther, G. R. Community and ecosystem responses to recent climate change. Phil. Trans. R. Soc. B 365, 2019–2024 (2010).

    Article  Google Scholar 

  9. 9

    Poisot, T., Canard, E., Mouillot, D., Mouquet, N. & Gravel, D. The dissimilarity of species interaction networks. Ecol. Lett. 15, 1353–1361 (2012).

    Article  Google Scholar 

  10. 10

    Lu, X. et al. Drought rewires the cores of food webs. Nat. Clim. Change 6, 875–878 (2016).

    Article  Google Scholar 

  11. 11

    Urban, M. C., de Meester, L., Vellend, M., Stoks, R. & Vanoverbeke, J. A crucial step toward realism: responses to climate change from an evolving metacommunity perspective. Evol. Appl. 5, 154–167 (2011).

    Article  Google Scholar 

  12. 12

    Leibold, M. A. et al. The metacommunity concept: a framework for multi-scale community ecology. Ecol. Lett. 7, 601–613 (2004).

    Article  Google Scholar 

  13. 13

    Alexander, J. M., Diez, J. M & Levine, J. M. Novel competitors shape species’ responses to climate change. Nature (2015).

  14. 14

    Urban, M. C., Zarnetske, P. L. & Skelly, D. K. Moving forward: dispersal and species interactions determine biotic responses to climate change. Ann. NY Acad. Sci. 1297, 44–60 (2013).

    PubMed  Google Scholar 

  15. 15

    Norberg, J., Urban, M. C., Vellend, M., Klausmeier, C. A. & Loeuille, N. Eco-evolutionary responses of biodiversity to climate change. Nat. Clim. Change 2, 747–751 (2012).

    Article  Google Scholar 

  16. 16

    Gilman, S. E., Urban, M. C., Tewksbury, J., Gilchrist, G. W. & Holt, R. D. A framework for community interactions under climate change. Trends Ecol. Evol. 25, 325–331 (2010).

    Article  Google Scholar 

  17. 17

    Spasojevic, M. J., Harrison, S., Day, H. W. & Southard, R. J. Above- and belowground biotic interactions facilitate relocation of plants into cooler environments. Ecol. Lett. 17, 700–709 (2014).

    Article  Google Scholar 

  18. 18

    Urban, M. C., Tewksbury, J. J. & Sheldon, K. S. On a collision course: competition and dispersal differences create no-analogue communities and cause extinctions during climate change. Proc. R. Soc. B 279, 2072–2080 (2012).

    Article  Google Scholar 

  19. 19

    Loreau, M., Mouquet, N. & Gonzalez, A. Biodiversity as spatial insurance in heterogeneous landscapes. Proc. Natl Acad. Sci. USA 100, 12765–12770 (2003).

    CAS  Article  Google Scholar 

  20. 20

    Brooker, R. W., Travis, J. M. J., Clark, E. J. & Dytham, C. Modelling species’ range shifts in a changing climate: the impacts of biotic interactions, dispersal distance and the rate of climate change. J. Theor. Biol. 245, 59–65 (2007).

    Article  Google Scholar 

  21. 21

    Haddad, N. M. et al. Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci. Adv. 1, e1500052 (2015).

    Article  Google Scholar 

  22. 22

    Soliveres, S., Smit, C. & Maestre, F. T. Moving forward on facilitation research: response to changing environments and effects on the diversity, functioning and evolution of plant communities. Biol. Rev. Camb. Philos. Soc. 90, 297–313 (2015).

    Article  Google Scholar 

  23. 23

    Pillai, P., Gonzalez, A. & Loreau, M. Metacommunity theory explains the emergence of food web complexity. Proc. Natl Acad. Sci. USA 108, 19293–19298 (2011).

    CAS  Article  Google Scholar 

  24. 24

    Gravel, D., Massol, F., Canard, E., Mouillot, D. & Mouquet, N. Trophic theory of island biogeography. Ecol. Lett. 14, 1010–1016 (2011).

    Article  Google Scholar 

  25. 25

    Ives, A. R. & Cardinale, B. J. Food-web interactions govern the resistance of communities after non-random extinctions. Nature 429, 174–177 (2004).

    CAS  Article  Google Scholar 

  26. 26

    Tylianakis, J. M., Laliberté, E., Nielsen, A. & Bascompte, J. Conservation of species interaction networks. Biol. Conserv. 143, 2270–2279 (2010).

    Article  Google Scholar 

  27. 27

    HilleRisLambers, J., Harsch, M. A., Ettinger, A. K., Ford, K. R. & Theobald, E. J. How will biotic interactions influence climate change-induced range shifts? Ann. NY Acad. Sci. 1297, 112–125 (2013).

    PubMed  Google Scholar 

  28. 28

    Zarnetske, P. L., Skelly, D. K. & Urban, M. C. Biotic multipliers of climate change. Science 336, 1516–1518 (2012).

    CAS  Article  Google Scholar 

  29. 29

    Voigt, W. et al. Trophic levels are differentially sensitive to climate. Ecology 84, 2444–2453 (2003).

    Article  Google Scholar 

  30. 30

    Ledger, M. E., Brown, L. E., Edwards, F. K., Milner, A. M. & Woodward, G. Drought alters the structure and functioning of complex food webs. Nat. Clim. Change 3, 223–227 (2012).

    Article  Google Scholar 

  31. 31

    Woodward, G. et al. Climate change impacts in multispecies systems: drought alters food web size structure in a field experiment. Phil. Trans. R. Soc. B 367, 2990–2997 (2012).

    Article  Google Scholar 

  32. 32

    McCann, K. S. Protecting biostructure. Nature 446, 29 (2007).

    CAS  Article  Google Scholar 

  33. 33

    Urban, M. C. et al. Improving the forecast for biodiversity under climate change. Science 353, aad8466 (2016).

    Article  Google Scholar 

  34. 34

    Gonzalez, A., Rayfield, B. & Lindo, Z. The disentangled bank: how loss of habitat fragments and disassembles ecological networks. Am. J. Bot. 98, 503–516 (2011).

    Article  Google Scholar 

  35. 35

    Rayfield, B., Fortin, M.-J. & Fall, A. Connectivity for conservation: a framework to classify network measures. Ecology 92, 847–858 (2011).

    Article  Google Scholar 

  36. 36

    McGuire, J. L., Lawler, J. J., McRae, B. H., Nuñez, T. A. & Theobald, D. M. Achieving climate connectivity in a fragmented landscape. Proc. Natl Acad. Sci. USA 113, 7195–7200 (2016).

    CAS  Article  Google Scholar 

  37. 37

    Krosby, M., Tewksbury, J., Haddad, N. M. & Hoekstra, J. Ecological connectivity for a changing climate. Conserv. Biol. 24, 1686–1689 (2010).

    Article  Google Scholar 

  38. 38

    Heller, N. E. & Zavaleta, E. S. Biodiversity management in the face of climate change: A review of 22 years of recommendations. Biol. Conserv. 142, 14–32 (2009).

    Article  Google Scholar 

  39. 39

    R Core Team. R: a language and environment for statistical computing. (R Foundation for Statistical Computing, Vienna, Austria, 2015).

  40. 40

    McCann, K. S., Hastings, A. & Huxel, G. R. Weak trophic interactions and the balance of nature. Nature 395, 794–798 (1998).

    CAS  Article  Google Scholar 

  41. 41

    Koleff, P., Gaston, K. J. & Lennon, J. J. Measuring beta diversity for presence–absence data. J. Anim. Ecol. 72, 367–382 (2003).

    Article  Google Scholar 

  42. 42

    Kones, J. K., Soetaert, K., van Oevelen, D. & Owino, J. O. Are network indices robust indicators of food web functioning? A Monte Carlo approach. Ecol. Model. 220, 370–382 (2009).

    Article  Google Scholar 

Download references


We thank M. O’Connor, B. Beisner, G. Fussmann, E. Pedersen, A. Ives and members of the Gonzalez lab for assistance and valuable feedback. P.L.T. is supported by NSERC, Vineberg and Killam fellowships. A.G. is supported by the Canada Research Chair program, Killam Fellowship, the Liber Ero Chair in Conservation Biology and NSERC.

Author information




P.L.T. and A.G. designed the study. P.L.T. wrote the code and performed the simulations. P.L.T. wrote the first draft of the manuscript and both authors contributed substantially to revisions.

Corresponding author

Correspondence to Patrick L. Thompson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures 1–8. (PDF 1876 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Thompson, P., Gonzalez, A. Dispersal governs the reorganization of ecological networks under environmental change. Nat Ecol Evol 1, 0162 (2017). https://doi.org/10.1038/s41559-017-0162

Download citation

Further reading