Late Pliocene environmental change during the transition from Australopithecus to Homo


It has long been hypothesized that the transition from Australopithecus to Homo in eastern Africa was linked to the spread of open and arid environments near the Plio−Pleistocene boundary, but data for the latest Pliocene are scarce. Here we present new stable carbon isotope data from the late Pliocene mammalian fauna from Ledi-Geraru, in the lower Awash Valley (LAV), Ethiopia, and mammalian community analyses from the LAV and Turkana Basin. These data, combined with pedogenic carbonate stable isotopes, indicate that the two regions were largely similar through the Plio−Pleistocene, but that important environmental differences existed during the emergence of Homo around 2.8 million years ago. The mid-Pliocene to late Pliocene interval in the LAV was characterized by increasingly C4-dominated, arid and seasonal environments. The early Homo mandible LD 350-1 has a carbon isotope value similar to that of earlier Australopithecus from the LAV, possibly indicating that the emergence of Homo from Australopithecus did not involve a dietary shift. Late Pliocene LAV environments contrast with contemporaneous environments in the Turkana Basin, which were more woody and mesic. These findings have important implications for the environmental conditions surrounding the emergence of Homo, as well as recent hypotheses regarding Plio−Pleistocene environmental change in eastern Africa.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Box-and-whisker plots of mammalian enamel δ13C values.
Figure 2: Correspondence analysis of mammal community functional traits for fossil communities from the lower Awash Valley and the Turkana Basin.
Figure 3: Compilation of the available δ13C values of tooth enamel from the LGRP area, the Hadar Formation, and the Nachukui and Koobi Fora formations in the Turkana Basin spanning the interval of around 3.5 to 1.0 Ma.


  1. 1

    DeMenocal, P. B. Plio-Pleistocene African climate. Science 270, 53–59 (1995).

    CAS  Article  Google Scholar 

  2. 2

    DeMenocal, P. B. African climate change and faunal evolution during the Pliocene–Pleistocene. Earth Planet. Sci. Lett. 220, 3–24 (2004).

    CAS  Article  Google Scholar 

  3. 3

    Bobe, R. & Behrensmeyer, A. K. The expansion of grassland ecosystems in Africa in relation to mammalian evolution and the origin of the genus Homo. Palaeogeogr. Palaeoclimatol. Palaeoecol. 207, 399–420 (2004).

    Article  Google Scholar 

  4. 4

    Vrba, E. S. Environment and evolution: alternative causes of the temporal distribution of evolutionary events. S. Afr. J. Sci. 81, 229–236 (1985).

    Google Scholar 

  5. 5

    Vrba, E. S. in Evolutionary History of the “Robust” Australopithecines (ed. Grine, F. E. ) 405–426 (Transaction, 1988).

    Google Scholar 

  6. 6

    Bobe, R., Behrensmeyer, A. K., Eck, G. G. & Harris, J. M. in Hominin Environments in the East African Pliocene: An Assessment of the Faunal Evidence (eds Bobe, R., Alemseged, Z. & Behrensmeyer, A. K.) 129–158 (Springer, 2007).

    Google Scholar 

  7. 7

    Levin, N. E., Brown, F. H., Behrensmeyer, A. K., Bobe, R. & Cerling, T. E. Paleosol carbonates from the Omo Group: isotopic records of local and regional environmental change in East Africa. Palaeogeogr. Palaeoclimatol. Palaeoecol. 307, 75–89 (2011).

    Article  Google Scholar 

  8. 8

    Levin, N. E. Environment and climate of early human evolution. Annu. Rev. Earth Planet. Sci. 43, 405–429 (2015).

    CAS  Article  Google Scholar 

  9. 9

    Wood, B. A. & Leakey, M. G. The Omo-Turkana Basin fossil hominins and their contribution to our understanding of human evolution in Africa. Evol. Anthropol. 20, 264–292 (2011).

    Article  Google Scholar 

  10. 10

    Bobe, R. Fossil mammals and paleoenvironments in the Omo-Turkana Basin. Evol. Anthropol. 20, 254–263 (2011).

    Article  Google Scholar 

  11. 11

    Johanson, D. C., Taieb, M. & Coppens, Y. Pliocene hominids from the Hadar Formation, Ethiopia (1973–1977): stratigraphic, chronologic, and paleoenvironmental contexts, with notes on hominid morphology and systematics. Am. J. Phys. Anthropol. 57, 373–402 (1982).

    Article  Google Scholar 

  12. 12

    Frost, S. R. & Delson, E. Fossil Cercopithecidae from the Hadar Formation and surrounding areas of the Afar Depression, Ethiopia. J. Hum. Evol. 43, 687–748 (2002).

    Article  Google Scholar 

  13. 13

    Reed, K. E. Paleoecological patterns at the Hadar hominin site, Afar regional state, Ethiopia. J. Hum. Evol. 54, 743–768 (2008).

    Article  Google Scholar 

  14. 14

    DiMaggio, E. N. et al. Late Pliocene fossiliferous sedimentary record and the environmental context of early Homo from Afar, Ethiopia. Science 347, 1355–1359 (2015).

    CAS  Article  Google Scholar 

  15. 15

    Villmoare, B. et al. Early Homo at 2.8 Ma from Ledi-Geraru, Afar, Ethiopia. Science 347, 1352–1355 (2015).

    CAS  Article  Google Scholar 

  16. 16

    Kingston, J. D. Shifting adaptive landscapes: progress and challenges in reconstructing early hominid environments. Am. J. Phys. Anthropol. 134, 20–58 (2007).

    Article  Google Scholar 

  17. 17

    Levin, N. E., Haile-Selassie, Y., Frost, S. R. & Saylor, B. Z. Dietary change among hominins and cercopithecids in Ethiopia during the early Pliocene. Proc. Natl Acad. Sci. USA 112, 12304–12309 (2015).

    CAS  Article  Google Scholar 

  18. 18

    Wynn, J. G. et al. Dietary flexibility of Australopithecus afarensis in the face of paleoecological change during the middle Pliocene: evidence from Hadar, Ethiopia. J. Hum. Evol. 99, 93–106 (2016).

    Article  Google Scholar 

  19. 19

    Cerling, T. E., Chritz, K. L., Jablonski, N. G., Leakey, M. G. & Manthi, F. K. Diet of Theropithecus from 4 to 1 Ma in Kenya. Proc. Natl Acad. Sci. USA 110, 10507–10512 (2013).

    CAS  Article  Google Scholar 

  20. 20

    Wynn, J. G. et al. Diet of Australopithecus afarensis from the Pliocene Hadar formation, Ethiopia. Proc. Natl Acad. Sci. USA 110, 10495–10500 (2013).

    CAS  Article  Google Scholar 

  21. 21

    Negash, E. W., Alemseged, Z., Wynn, J. G. & Bedaso, Z. K. Paleodietary reconstruction using stable isotopes and abundance analysis of bovids from the Shungura Formation of South Omo, Ethiopia. J. Hum. Evol. 88, 127–136 (2015).

    Article  Google Scholar 

  22. 22

    McDougall, I. et al. New single crystal 40Ar/39Ar ages improve time scale for deposition of the Omo Group, Omo–Turkana Basin, East Africa. J. Geol. Soc. London 169, 213–226 (2012).

    CAS  Article  Google Scholar 

  23. 23

    Cerling, T. E. et al. Dietary changes of large herbivores in the Turkana Basin, Kenya from 4 to 1 Ma. Proc. Natl Acad. Sci. USA 112, 11467–11472 (2015).

    CAS  Article  Google Scholar 

  24. 24

    Fortelius, M. et al. An ecometric analysis of the fossil mammal record of the Turkana Basin. Phil. Trans. R. Soc. B 371, 20150232 (2016).

    Article  Google Scholar 

  25. 25

    Rowan, J. et al. Fossil Giraffidae (Mammalia, Artiodactyla) from Lee Adoyta, Ledi-Geraru, and late Pliocene dietary evolution in giraffids from the lower Awash Valley, Ethiopia. J. Mamm. Evol. (2016).

  26. 26

    Aronson, J. L., Hailemichael, M. & Savin, S. M. Hominid environments at Hadar from paleosol studies in a framework of Ethiopian climate change. J. Hum. Evol. 55, 532–550 (2008).

    Article  Google Scholar 

  27. 27

    Levin, N. E., Quade, J., Simpson, S. W., Semaw, S. & Rogers, M. Isotopic evidence for Plio–Pleistocene environmental change at Gona, Ethiopia. Earth Planet. Sci. Lett. 219, 93–110 (2004).

    CAS  Article  Google Scholar 

  28. 28

    Quade, J. et al. Paleoenvironments of the earliest stone toolmakers, Gona, Ethiopia. Geol. Soc. Am. Bull. 116, 1529–1544 (2004).

    Article  Google Scholar 

  29. 29

    De Heinzelin, J. et al. Environment and behavior of 2.5-million-year-old Bouri hominids. Science 284, 625–629 (1999).

    CAS  Article  Google Scholar 

  30. 30

    Heaton, T. Spatial, species, and temporal variations in the 13C/12C ratios of C3 plants: implications for palaeodiet studies. J. Archaeol. Sci. 26, 637–649 (1999).

    Article  Google Scholar 

  31. 31

    O’Leary, M. H. Carbon isotope fractionation in plants. Phytochemistry 20, 553–567 (1981).

    Article  Google Scholar 

  32. 32

    O’Leary, M. H. Carbon isotope photosynthesis. Bioscience 38, 328–336 (1988).

    Article  Google Scholar 

  33. 33

    Cerling, T. E., Harris, J. M. & Passey, B. H. Diets of East African Bovidae based on stable isotope analysis. J. Mammal. 84, 456–470 (2003).

    Article  Google Scholar 

  34. 34

    Kingston, J. D. in Paleontology and Geology of Laetoli: Human Evolution in Context (ed. Harrison, T. ) 293–328 (Springer, 2011).

    Google Scholar 

  35. 35

    Cerling, T. E. & Harris, J. M. Carbon isotope fractionation between diet and bioapatite in ungulate mammals and implications for ecological and paleoecological studies. Oecologia 120, 119–146 (1999).

    Google Scholar 

  36. 36

    Passey, B. H. et al. Carbon isotope fractionation between diet, breath CO2, and bioapatite in different mammals. J. Archaeol. Sci. 32, 1459–1470 (2005).

    Article  Google Scholar 

  37. 37

    Reed, K. E. Early hominid evolution and ecological change through the African Plio-Pleistocene. J. Hum. Evol. 32, 289–322 (1997).

    CAS  Article  Google Scholar 

  38. 38

    Reed, K. E. Using large mammal communities to examine ecological and taxonomic structure and predict vegetation in extant and extinct assemblages. Paleobiology 24, 384–408 (1998).

    Google Scholar 

  39. 39

    Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Clim. 25, 1965–1978 (2005).

    Article  Google Scholar 

  40. 40

    Wei, T. & Simko, V. Package ‘corrplot’: visualization of a correlation matrix. Matrix R Package v.0.77 (2016).

  41. 41

    IBM Corp. IBM SPSS Statistics for Windows, version 24.0 (2016).

  42. 42

    R Development Core Team R: A Language and Enviroment for Statistical Computing (R Foundation for Statistical Computing, 2014).

  43. 43

    Sponheimer, M. et al. Isotopic evidence of early hominin diets. Proc. Natl Acad. Sci. USA 110, 10513–10518 (2013).

    CAS  Article  Google Scholar 

  44. 44

    Feakins, S. J. et al. Northeast African vegetation change over 12 m.y. Geology 41, 295–298 (2013).

    Article  Google Scholar 

Download references


We thank the curators and staff of the Authority for Research and Conservation of Cultural Heritage at the Ethiopian National Museum in Addis Ababa, Ethiopia, for access to fossil specimens in their care. We thank the Afar people for assisting with fieldwork. Thanks to J. Wilson for helping to analyse samples at the University of South Florida. We thank M. Leakey for access to the most recent version of the Turkana Database. J.R. was supported by a National Science Foundation Graduate Research Fellowship. Field and lab work in the Ledi-Geraru area was made possible by National Science Foundation grant BCS-1157351. This research was also made possible through the support of a grant from the John Templeton Foundation to the Institute of Human Origins at Arizona State University. The opinions expressed in this publication are those of the authors and do not necessarily reflect the views of the John Templeton Foundation.

Author information




J.R.R., J.R., C.J.C., J.G.W. and K.E.R. designed and performed the research, analysed the data and wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Joshua R. Robinson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Methods, Supplementary Discussion of the carbon and oxygen isotope results, Supplementary Figures, Supplementary Tables, and Supplementary References (PDF 3049 kb)

Supplementary Data 1

Raw values and catalogue numbers for all individual teeth included in this study. Taxonomic identifications and detailed descriptions for each tooth sampled are also included. (XLSX 22 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Robinson, J., Rowan, J., Campisano, C. et al. Late Pliocene environmental change during the transition from Australopithecus to Homo. Nat Ecol Evol 1, 0159 (2017).

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing