Abstract

Submarine volcanic eruptions are major catastrophic events that allow investigation of the colonization mechanisms of newly formed seabed. We explored the seafloor after the eruption of the Tagoro submarine volcano off El Hierro Island, Canary Archipelago. Near the summit of the volcanic cone, at about 130 m depth, we found massive mats of long, white filaments that we named Venus’s hair. Microscopic and molecular analyses revealed that these filaments are made of bacterial trichomes enveloped within a sheath and colonized by epibiotic bacteria. Metagenomic analyses of the filaments identified a new genus and species of the order Thiotrichales, Thiolava veneris. Venus’s hair shows an unprecedented array of metabolic pathways, spanning from the exploitation of organic and inorganic carbon released by volcanic degassing to the uptake of sulfur and nitrogen compounds. This unique metabolic plasticity provides key competitive advantages for the colonization of the new habitat created by the submarine eruption. A specialized and highly diverse food web thrives on the complex three-dimensional habitat formed by these microorganisms, providing evidence that Venus’s hair can drive the restart of biological systems after submarine volcanic eruptions.

  • Subscribe to Nature Ecology & Evolution for full access:

    $99

    Subscribe
  • Purchase article full text and PDF:

    $32

    Buy now

Additional access options:

Already a subscriber? Log in now or Register for online access.

References

  1. 1.

    & The role of seamount volcanism in crustal construction at the Mid-Atlantic Ridge (24°–30° N). J. Geophys. Res. 97, 1645–1658 (1992).

  2. 2.

    et al. Volcanic eruptions in the deep sea. Oceanography 25, 142–157 (2012).

  3. 3.

    et al. Construction of an oceanic island: insights from El Hierro 2011–12 submarine volcanic eruption. Geology 41, 355–358 (2013).

  4. 4.

    et al. The submarine volcano eruption at the island of El Hierro: physical–chemical perturbation and biological response. Sci. Rep. 2, 486 (2012).

  5. 5.

    et al. The natural ocean acidification and fertilization event caused by the submarine eruption of El Hierro. Sci. Rep. 3, 1140 (2013).

  6. 6.

    et al. Effects of the submarine volcanic eruption of El Hierro (Canary Islands) on the bacterioplankton communities of the surrounding. PLoS ONE 10, e0118136 (2014).

  7. 7.

    et al. Bacterial diversity and successional patterns during biofilm formation on freshly exposed basalt surfaces at diffuse-flow deep-sea vents. Front. Microbiol. 6, 901 (2015).

  8. 8.

    , , & Microbiological characterization of post-eruption “snowblower” vents at Axial Seamount, Juan de Fuca Ridge. Front. Microbiol. 4, 153 (2013).

  9. 9.

    & Neutrophilic Fe-oxidizing bacteria are abundant at the Loihi Seamount hydrothermal vents and play a major role in Fe oxide deposition. Appl. Environ. Microbiol. 68, 3085–3093 (2002).

  10. 10.

    , , , & Geology, geochemistry and earthquake history of Lō`ihi seamount, Hawai`i’s youngest volcano. Chem. Erde Geochem. 66, 81–108 (2006).

  11. 11.

    et al. Evolution of a submarine magmatic-hydrothermal system: Brothers volcano, southern Kermadec arc, New Zealand. Econ. Geol. 100, 1097–1133 (2005).

  12. 12.

    et al. Hydrothermal activity and volcano distribution along the Mariana arc. J. Geophys. Res. 113, B8 (2008).

  13. 13.

    , & Volcanoes, fluids, and life at mid-ocean ridge spreading centers. Annu. Rev. Earth Planet. Sci. 30, 385–491(2002).

  14. 14.

    et al. Morphometry of Concepcion Bank: evidence of geological and biological processes on a large volcanic seamount of the Canary Islands Seamount Province. PLoS ONE 11, e0156337 (2016).

  15. 15.

    et al. La erupción submarina de La Restinga en la isla de El Hierro, Canarias: Octubre 2011–Marzo 2012. Estud. Geol. 68, 5–27 (2012).

  16. 16.

    et al. Significant discharge of CO2 from hydrothermalism associated with the submarine volcano of El Hierro Island. Sci. Rep. 6, 25686 (2016).

  17. 17.

    & Thioploca spp.: filamentous sulfur bacteria with nitrate vacuoles. FEMS Microbiol. Ecol. 28, 301–313 (1999).

  18. 18.

    et al. Biological and chemical sulfide oxidation in a Beggiatoa inhabited marine sediment. ISME J. 1, 341–353 (2007).

  19. 19.

    et al. Ecophysiology of Thioploca ingrica as revealed by the complete genome sequence supplemented with proteomic evidence. ISME J. 9, 1166–1176 (2015).

  20. 20.

    & Assessment of the stoichiometry and efficiency of CO2 fixation coupled to reduced sulfur oxidation. Front. Microbiol. 6, 484 (2014).

  21. 21.

    et al. Dual role of HupF in the biosynthesis of [NiFe] hydrogenase in Rhizobium leguminosarum. BMC Microbiol. 12, 256 (2012).

  22. 22.

    , , & Metatranscriptomic analysis of sulfur oxidation genes in the endosymbiont of Solemya velum. Front. Microbiol. 2, 134 (2011).

  23. 23.

    , , , & Metatranscriptomics reveal differences in in situ energy and nitrogen metabolism among hydrothermal vent snail symbionts. ISME J. 7, 1556–1567 (2013).

  24. 24.

    & Beyond the Calvin cycle: autotrophic carbon fixation in the ocean. Ann. Rev. Mar. Sci. 3, 261–289 (2011).

  25. 25.

    et al. Metagenomic investigation of the geologically unique Hellenic Volcanic Arc reveals a distinctive ecosystem with unexpected physiology. Environ. Microbiol. 18, 1122–1136 (2016).

  26. 26.

    The ecology of Cytophaga–Flavobacteria in aquatic environments. FEMS Microbiol. Ecol. 39, 91–100 (2002).

  27. 27.

    et al. Structure and function of natural sulphide-oxidizing microbial mats under dynamic input of light and chemical energy. ISME J. 10, 921–933 (2016).

  28. 28.

    et al. Trophic specialisation of metazoan meiofauna at the Håkon Mosby mud volcano: fatty acid biomarker isotope evidence. Mar. Biol. 156, 1289–1296 (2009).

  29. 29.

    Free-living nematode species (Nematoda) dwelling in hydrothermal sites of the North Mid-Atlantic Ridge. Helgoland Mar. Res. 69, 343 (2015).

  30. 30.

    & Use of SYBR Green I for rapid epifluorescence counts of marine viruses and bacteria. Aquat. Microb. Ecol. 14, 113–118 (1998).

  31. 31.

    et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

  32. 32.

    , & Fluorescence in situ hybridization and catalyzed reporter deposition for the identification of marine bacteria. Appl. Environ. Microbiol. 68, 3094–3101 (2002).

  33. 33.

    , , , & Combining catalyzed reporter deposition-fluorescence in situ hybridization and microautoradiography to detect substrate utilization by bacteria and archaea in the deep ocean. Appl. Environ. Microbiol. 70, 4411–4414 (2004).

  34. 34.

    & Reliability of CARD-FISH procedure for enumeration of Archaea in deep-sea surficial sediments. Curr. Microbiol. 64, 242–250 (2012).

  35. 35.

    & An alternative SEM drying method using hexamethyldisilazane (HMDS) for microbial cell attachment studies on sub-bituminous coal. J. Microbiol. Meth. 90, 96–99 (2012).

  36. 36.

    , , , & Interlayer formation of diamond-like carbon coatings on industrial polyethylene: thickness dependent surface characterization by SEM, AFM and NEXAFS. Appl. Surf. Sci. 271, 381–389 (2013).

  37. 37.

    , & Grazers and phytoplankton growth in the oceans: an experimental and evolutionary perspective. PLoS ONE 8, e77349 (2013).

  38. 38.

    in Handbook of Methods in Aquatic Microbial Ecology (eds Kemp, P. F. et al.) 423–431 (CRC, 1993).

  39. 39.

    , , & Extracellular DNA can preserve the genetic signatures of present and past viral infection events in deep hypersaline anoxic basins. Proc. R. Soc. B 281, 20133299 (2014).

  40. 40.

    Methods for the Study of Deep-Sea Sediments, their Functioning and Biodiversity (CRC, 2010).

  41. 41.

    et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 41, e1 (2012).

  42. 42.

    & FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27, 2957–2963 (2011).

  43. 43.

    & Quality control and preprocessing of metagenomic datasets. Bioinformatics 27, 863–864 (2011).

  44. 44.

    et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336 (2010).

  45. 45.

    , & SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 28, 1823–1829 (2012).

  46. 46.

    Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).

  47. 47.

    , , & MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. PeerJ 3, e1165 (2015).

  48. 48.

    et al. Methane metabolism in the archaeal phylum Bathyarchaeota revealed by genome-centric metagenomics. Science 350, 434–438 (2015).

  49. 49.

    , , , & CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055 (2015).

  50. 50.

    et al. VizBin—an application for reference-independent visualization and human-augmented binning of metagenomic data. Microbiome 3, 1 (2015).

  51. 51.

    , , , & Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

  52. 52.

    , , & PhyloPhlAn is a new method for improved phylogenetic and taxonomic placement of microorganisms. Nat. Commun. 4, 2304 (2013).

  53. 53.

    , , , & MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31, 1674–1676 (2015).

  54. 54.

    et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11, 19 (2010).

  55. 55.

    , & BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J. Mol. Biol. 428, 726–731 (2016).

  56. 56.

    , & Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59–60 (2015).

  57. 57.

    & Bypassing cultivation to identify bacterial species. Microbe 9, 111–118 (2014).

  58. 58.

    , & Fast and sensitive taxonomic classification for metagenomics with Kaiju. Nat. Commun. 7, 11257 (2016).

  59. 59.

    et al. Multiple comparative metagenomics using multiset k-mer counting. Preprint at (2016).

Download references

Author information

Affiliations

  1. Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona 60131, Italy.

    • Roberto Danovaro
    • , Michael Tangherlini
    • , Antonio Dell’Anno
    •  & Cristina Gambi
  2. Stazione Zoologica Anton Dohrn, Naples, Naples 80121, Italy.

    • Roberto Danovaro
  3. CRG Marine Geosciences, Department of Earth and Ocean Dynamics, Faculty of Earth Sciences, University of Barcelona, Barcelona E-08028, Spain.

    • Miquel Canals
    • , Galderic Lastras
    • , David Amblas
    • , Anna Sanchez-Vidal
    • , Jaime Frigola
    • , Antoni M. Calafat
    • , Rut Pedrosa-Pàmies
    •  & Xavier Rayo
  4. Scott Polar Research Institute, Lensfield Road, Cambridge, UK.

    • David Amblas
  5. Instituto Español de Oceanografía, Corazón de María 8, Madrid E-28002, Spain.

    • Jesus Rivera
  6. Dipartimento di Scienze e Ingegneria della Materia, dell’Ambiente ed Urbanistica, Polytechnic University of Marche, Ancona 60131, Italy.

    • Cinzia Corinaldesi

Authors

  1. Search for Roberto Danovaro in:

  2. Search for Miquel Canals in:

  3. Search for Michael Tangherlini in:

  4. Search for Antonio Dell’Anno in:

  5. Search for Cristina Gambi in:

  6. Search for Galderic Lastras in:

  7. Search for David Amblas in:

  8. Search for Anna Sanchez-Vidal in:

  9. Search for Jaime Frigola in:

  10. Search for Antoni M. Calafat in:

  11. Search for Rut Pedrosa-Pàmies in:

  12. Search for Jesus Rivera in:

  13. Search for Xavier Rayo in:

  14. Search for Cinzia Corinaldesi in:

Contributions

R.D. and M.C. conceived the study. M.C., G.L. and A.M.C. led the research cruise where the Venus’s hair mats were found, and mapped and sampled them. J.R. played a pivotal role in the ROV operations. M.T., D.A., J.F., R.P.-P. and X.R. performed the fieldwork. A.S.-V. performed the substrate rock analyses. M.T., A.D.A. and C.C. carried out the bioinformatic analyses. C.G. performed the extraction and classification of the meiofaunal organisms. C.C., A.D.A. and M.T. conducted the laboratory analyses. R.D., M.C., C.C., A.D.A., C.G. and M.T. wrote the manuscript. G.L., A.S.-V and A.M.C. critically read and contributed to the manuscript.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Roberto Danovaro.

Supplementary information

PDF files

  1. 1.

    Supplementary Information

    Supplementary Tables 1–4, Supplementary Figures 1–6.