Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Skeletal trauma reflects hunting behaviour in extinct sabre-tooth cats and dire wolves


Skeletal-injury frequency and distribution are likely to reflect hunting behaviour in predatory vertebrates and might therefore differ between species with distinct hunting modes. Two Pleistocene predators from the Rancho La Brea asphalt seeps, the sabre-tooth cat, Smilodon fatalis, and dire wolf, Canis dirus, represent ambush and pursuit predators, respectively. On the basis of a collection of over 1,900 pathological elements, the frequency of traumatic injury across skeletal elements in these two species was calculated. Here we show that the frequency of trauma in the sabre-tooth cat exceeds that of the dire wolf (4.3% compared to 2.8%), implying that the killing behaviour of S. fatalis entailed greater risk of injury. The distribution of traumatic injuries also differed between the two species. S. fatalis, an ambush predator, was injured more often than expected across the lumbar vertebrae and shoulders whereas C. dirus, a pursuit predator, had higher than expected levels of injury in the limbs and cervical vertebrae. Spatial analysis was used to quantify differences in the distribution of putative hunting injuries. Analysis of injury locations discriminated true hotspots from injury-dense areas and facilitated interpretation of predatory behaviour, demonstrating the use of spatial analyses in the study of vertebrate behaviour and evolution. These results suggest that differences in trauma distribution reflect distinct hazards of each species’ hunting mode.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Examples of common chronic pathologies in C. dirus and S. fatalis.
Figure 2: Observed and expected counts of pathological elements by anatomical region in S. fatalis and C. dirus.
Figure 3: Distribution of traumatic and chronic pathology centroids across S. fatalis and C. dirus skeletal base maps.
Figure 4: Density/heat map depictions of traumatic and chronic pathology centroids across a S. fatalis and C. dirus hindlimb.


  1. 1

    Stewart, T. in The First Americans: Origins, Affinities, and Adaptations (eds Laughlin, W . & Harper, A. ) 257–274 (Fischer, 1979).

    Google Scholar 

  2. 2

    Jurmain, R. D. The pattern of involvement of appendicular degenerative joint disease. Am. J. Phys. Anthropol. 53, 143–150 (1980).

    CAS  Article  Google Scholar 

  3. 3

    Bridges, P. S. Prehistoric arthritis in the Americas. Annu. Rev. Anthropol. 21, 67–91 (1992).

    Article  Google Scholar 

  4. 4

    Bridges, P. S. Vertebral arthritis and physical activities in the prehistoric southeastern United States. Am. J. Phys. Anthropol. 93, 83–93 (1994).

    CAS  Article  Google Scholar 

  5. 5

    Berger, T. D. & Trinkaus, E. Patterns of trauma among the Neandertals. J. Archaeol. Sci. 22, 841–852 (1995).

    Article  Google Scholar 

  6. 6

    Carbone, C., Teacher, A. & Rowcliffe, J. M. The costs of carnivory. PLoS Biol. 5, 363–368 (2007).

    CAS  Article  Google Scholar 

  7. 7

    Mukherjee, S. & Heithaus, M. R. Dangerous prey and daring predators: a review. Biol. Rev. 8, 550–563 (2013).

    Article  Google Scholar 

  8. 8

    Stock, C. Rancho La Brea: A Record of Pleistocene Life in California 7th edn (Natural History Museum of Los Angeles County, 1992).

    Google Scholar 

  9. 9

    Fuller, B. T ., Harris, J. M ., Farrell, A. B ., Takeuchi, G. T & Southon, J. R. in La Brea and beyond: The Paleontology of Asphalt-Preserved Biotas (ed Harris, J. M. ) 42, 151–167 (Natural History Museum of Los Angeles County Science Series, 2015).

    Google Scholar 

  10. 10

    Herrmann, N. GIS applied to bioarchaeology: an example from the Rio Talgua caves in Northeast Honduras. J. Cave Karst Stud. 64, 17–22 (2002).

    Google Scholar 

  11. 11

    Jennings, D. S. & Hasiotis, S. T. Taphonomic analysis of a dinosaur feeding site using geographic information systems (GIS), Morrison Formation, southern Bighorn Basin, Wyoming, USA. Palaios 21, 480–492 (2006).

    Article  Google Scholar 

  12. 12

    Marean, C. W., Abe, Y., Nilssen, P. J. & Stone, E. C. Estimating the minimum number of skeletal elements (MNE) in zooarchaeology: a review and a new image-analysis GIS approach. Am. Antiquity 66, 333–348 (2001).

    CAS  Article  Google Scholar 

  13. 13

    Parkinson, J. A. A GIS Image Analysis Approach to Documenting Oldowan Hominin Carcass Acquisition: Evidence from Kanjera South, FLK Zinj, and Neotaphonomic Models of Carnivore Bone Destruction. PhD thesis, City Univ. New York (2013).

    Google Scholar 

  14. 14

    Parkinson, J. A., Plummer, T. W. & Bose, R. A GIS-based approach to documenting large canid damage to bones. Palaeogeogr. Palaeoclim. Palaeoecol. 409, 57–71 (2014).

    Article  Google Scholar 

  15. 15

    Parkinson, J. A., Plummer, T. W. & Hartstone-Rose, A. Characterizing felid tooth marking and gross bone damage patterns using GIS image analysis: an experimental feeding study with large felids. J. Human Evol. 80, 114–134 (2015).

    Article  Google Scholar 

  16. 16

    Garb, J. L., Ganai, S., Skinner, R., Boyd, C. S. & Wait, R. B. Using GIS for spatial analysis of rectal lesions in the human body. Int. J. Health Geogr. 6, 11 (2007).

    Article  Google Scholar 

  17. 17

    Andersson, K. & Werdelin, L. The evolution of cursorial carnivores in the Tertiary: implications of elbow-joint morphology. Proc. R. Soc. B. 270, S163–S165 (2003).

    PubMed  PubMed Central  Google Scholar 

  18. 18

    Figueirido, B., Martín-Serra, A., Tseng, Z. J. & Janis C. M. Habitat changes and changing predatory habits in North American fossil canids. Nat. Commun. 6, 7976 (2015).

    CAS  Article  Google Scholar 

  19. 19

    Gonyea, W. J. Behavioral implications of saber-toothed felid morphology. Paleobiology 2, 332–342 (1976).

    Article  Google Scholar 

  20. 20

    Anyonge, W. Locomotor behavior in Plio–Pleistocene saber-tooth cats: a biomechanical analysis. J. Zool. 238, 395–413 (1996).

    Article  Google Scholar 

  21. 21

    Antón, M. Sabertooth (Indiana Univ. Press, 2013).

    Google Scholar 

  22. 22

    Malcolm, J. W. & Van Lawick, H. Notes on wild dogs (Lycaon pictus) hunting zebras. Mammalia 39, 231–240 (1975).

    Article  Google Scholar 

  23. 23

    Mech, L. D. Wolf (Doubleday, 2012).

    Google Scholar 

  24. 24

    Binder, W. J., Thompson, E. N. & Van Valkenburgh, B. Temporal variation in tooth fracture among Rancho La Brea dire wolves. J. Vert. Paleontol. 22, 423–428 (2002).

    Article  Google Scholar 

  25. 25

    Van Valkenburgh, B. Costs of carnivory: tooth fracture in Pleistocene and recent carnivorans. Biol. J. Linn. Soc. 96, 68–81 (2009).

    Article  Google Scholar 

  26. 26

    Hartstone-Rose A . et al. in La Brea and beyond: The Paleontology of Asphalt-Preserved Biotas (ed Harris, J. M. ) 42, 53–64 (Natural History Museum of Los Angeles County Science Series, 2015).

    Google Scholar 

  27. 27

    Scott, E ., Rega, E ., Scott, K ., Bennett, B & Sumida, S. in La Brea and beyond: The Paleontology of Asphalt-Preserved Biotas (ed. Harris, J. M. ) 42, 33–36 (Natural History Museum of Los Angeles County Science Series, 2015).

    Google Scholar 

  28. 28

    Ware, S. Disease, Skeletal Injury and Trauma as possible Behavior Modifiers in the Fossil Dire Wolf Canis Dirus (Canidae: Carnivora) from Rancho La Brea, California. PhD thesis, Union Inst. Univ. (2005).

    Google Scholar 

  29. 29

    Rothschild, B. M. & Martin, L. D. in The Other Saber-Tooths: Scimitar-Tooth Cats of The Western Hemisphere (eds Naples, V. L ., Martin, L. D ., & Babiarz, J. P. ) 35–41 (Johns Hopkins Univ. Press, 2011).

    Google Scholar 

  30. 30

    Heald, F & Shaw, C. in Great Cats. Majestic Creatures of the Wild (eds. Seidensticker, J. & Lumpkin, S. ) 26–27 (Rodale Press, 1991).

    Google Scholar 

  31. 31

    Shaw C. A. Old wounds: the paleopathology of Rancho La Brea. Terra 31, 17 (1992).

    Google Scholar 

  32. 32

    Bedrosian, B. E. & St. Pierre, A. M. Frequency of injury in three raptor species wintering in northeastern Arkansas. Wilson J. Ornithol. 119, 296–298 (2007).

    Article  Google Scholar 

  33. 33

    Roth, A. J., Jones, G. S. & French, T. W. Incidence of naturally healed fractures in the pectoral bones of American accipiters. J. Raptor Res. 36, 229–230 (2002).

    Google Scholar 

  34. 34

    Wobeser, G. Traumatic, degenerative, and developmental lesions in wolves and coyotes from Saskatchewan. J. Wildl. Diseases 28, 268–275 (1992).

    CAS  Article  Google Scholar 

  35. 35

    Van Valkenburgh, B., Hayward, M. W., Ripple, W. J., Meloro, C. & Roth, V. L. The impact of large terrestrial carnivores on Pleistocene ecosystems. Proc. Natl Acad. Sci. USA 113, 862–867 (2016).

    CAS  Article  Google Scholar 

  36. 36

    Akersten, W. A. Canine Function in Smilodon (Mammalia: Felidae: Machairodontinae) (Contributions in Science number 356, Natural History Museum of Los Angeles County, 1985).

    Google Scholar 

  37. 37

    Bramblett, C. A. Pathology in the Darajani baboon. Am. J. Phys. Anthropol. 26, 331–340 (1967).

    CAS  Article  Google Scholar 

  38. 38

    Buikstra, J. E. Healed fractures in Macaca mulatta: age, sex and symmetry. Folia Primatol. 23, 140–148 (1975).

    CAS  Article  Google Scholar 

  39. 39

    Harris, S. Injuries to foxes (Vulpes vulpes) in suburban London. J. Zool. 186, 567–572 (1978).

    PubMed  PubMed Central  Google Scholar 

  40. 40

    Kano, T. Observations of physical abnormalities among the wild bonobos (Pan paniscus) of Wamba, Zaire. Am. J. Phys. Anthropol. 63, 1–11 (1984).

    CAS  Article  Google Scholar 

  41. 41

    Wilkins, L. et al. Methods of assessing health and diet of Florida panthers (Puma concolor) using museum specimens. Part 1. Osteology as a means of assessing Florida panther health. Bull. Florida State Mus. Nat. Hist. 47, 74–98 (2007).

    Google Scholar 

  42. 42

    Van Valkenburgh, B. & Hertel, F. Tough times at La Brea: tooth breakage in large carnivores of the late Pleistocene. Science 261, 456–459 (1993).

    CAS  Article  Google Scholar 

  43. 43

    Marcellin-Little, D. J ., Levine, D & Taylor, R. Rehabilitation and conditioning of sporting dogs. Vet. Clin. North Amer. Small Anim. Practice. 35, 1427–1439 (2005).

    Article  Google Scholar 

  44. 44

    Davis, P. E. Toe and muscle injuries of the racing greyhound. NZ Veter. J. 21, 133–146 (1973).

    CAS  Article  Google Scholar 

  45. 45

    Worth, A. J., Danielsson, F., Bray, J. P., Burbidge, H. M. & Bruce, W. J. Ability to work and owner satisfaction following surgical repair of common calcaneal tendon injuries in working dogs in New Zealand. NZ Vet. J. 52, 109–116 (2004).

    CAS  Article  Google Scholar 

  46. 46

    Vaughan, L. C. Gracilis muscle injury in greyhounds. J. Small Anim. Practice. 10, 363–375 (1969).

    CAS  Article  Google Scholar 

  47. 47

    Meachen-Samuels, J. A. & Van Valkenburgh B. Radiographs reveal exceptional forelimb strength in the sabertooth cat, Smilodon fatalis. PLoS ONE 5, e11412 (2010).

    Article  Google Scholar 

  48. 48

    Carbyn, L. N., Oosenbrug, S. & Anions, D. W. Wolves, Bison and the Dynamics related to the Peace-Athabasca Delta in Canada’s Wood Buffalo National Park (Canadian Circumpolar Institute Press, 1993).

    Google Scholar 

  49. 49

    Van Valkenburgh, B. & Ruff, C. B. Canine tooth strength and killing behaviour in large carnivores. J. Zool. 212, 379–397 (1987).

    Article  Google Scholar 

  50. 50

    White, T. E. A method of calculating the dietary percentage of various food animals utilized by Aboriginal peoples. Am. Antiq. 18, 396–398 (1953).

    Article  Google Scholar 

  51. 51

    How Optimized Hot Spot Analysis works. esri (2016).

  52. 52

    How Average Nearest Neighbor Distance (Spatial Statistics) works. esri (2016).

Download references


F. Heald spent two decades analysing pathologies prior to his death in 2000, and for this we are grateful. We thank A. Farrell, G. Takeuchi and S. Cox of the La Brea Tar Pits and Museum for their help. J. Parkinson, M. Shin and A. Kochapu provided helpful advice on methods. For comments on the paper, we thank the Van Valkenburgh laboratory. J. Keller, T. Galea and K. Keeley helped create the GIS dataset. This work was supported by National Science Foundation grant SGP-1237928.

Author information




B.V.V. conceived the project; C.B. conceived and carried out the GIS analysis; B.V.V., C.B. and M.B. designed the collections research; C.A.S. diagnosed and curated the pathology specimens; C.B. and M.B. collected pathology type and location data, B.V.V. and C.B. wrote the paper. All authors gave final approval for publication.

Corresponding author

Correspondence to Caitlin Brown.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Methods; Supplementary Tables 1–5; Supplementary Figures 1,2 (PDF 663 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Brown, C., Balisi, M., Shaw, C. et al. Skeletal trauma reflects hunting behaviour in extinct sabre-tooth cats and dire wolves. Nat Ecol Evol 1, 0131 (2017).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing