Cross-realm assessment of climate change impacts on species’ abundance trends


Climate change, land-use change, pollution and exploitation are among the main drivers of species’ population trends; however, their relative importance is much debated. We used a unique collection of over 1,000 local population time series in 22 communities across terrestrial, freshwater and marine realms within central Europe to compare the impacts of long-term temperature change and other environmental drivers from 1980 onwards. To disentangle different drivers, we related species’ population trends to species- and driver-specific attributes, such as temperature and habitat preference or pollution tolerance. We found a consistent impact of temperature change on the local abundances of terrestrial species. Populations of warm-dwelling species increased more than those of cold-dwelling species. In contrast, impacts of temperature change on aquatic species’ abundances were variable. Effects of temperature preference were more consistent in terrestrial communities than effects of habitat preference, suggesting that the impacts of temperature change have become widespread for recent changes in abundance within many terrestrial communities of central Europe.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Relationship between species’ temperature preferences and population trends under climate change.
Figure 2: Climate change impacts on local communities.
Figure 3: Impacts of environmental drivers on population trends.


  1. 1

    Butchart, S. H. M. et al. Global biodiversity: indicators of recent declines. Science 328, 1164–1168 (2010).

    CAS  Article  Google Scholar 

  2. 2

    Living Planet Report 2016: Risk and Resilience in a New Era (WWF International, 2016).

  3. 3

    Winfree, R., Fox, J. W., Williams, N. M., Reilly, J. R. & Cariveau, D. P. Abundance of common species, not species richness, drives delivery of a real-world ecosystem service. Ecol. Lett. 18, 626–635 (2015).

    Article  Google Scholar 

  4. 4

    Mair, L. et al. Abundance changes and habitat availability drive species’ responses to climate change. Nat. Clim. Change 4, 127–131 (2014).

    Article  Google Scholar 

  5. 5

    Johnston, A. et al. Observed and predicted effects of climate change on species abundance in protected areas. Nat. Clim. Change 3, 1055–1061 (2013).

    Article  Google Scholar 

  6. 6

    Urban, M. C. Accelerating extinction risk from climate change. Science 348, 571–573 (2015).

    CAS  Article  Google Scholar 

  7. 7

    Chen, I. C., Hill, J. K., Ohlemuller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026 (2011).

    CAS  Article  Google Scholar 

  8. 8

    Gillings, S., Balmer, D. E. & Fuller, R. J. Directionality of recent bird distribution shifts and climate change in Great Britain. Glob. Change Biol. 21, 2155–2168 (2015).

    Article  Google Scholar 

  9. 9

    Virkkala, R. & Lehikoinen, A. Patterns of climate-induced density shifts of species: poleward shifts faster in northern boreal birds than in southern birds. Glob. Change Biol. 20, 2995–3003 (2014).

    Article  Google Scholar 

  10. 10

    Devictor, V. et al. Differences in the climatic debts of birds and butterflies at a continental scale. Nat. Clim. Change 2, 121–124 (2012).

    Article  Google Scholar 

  11. 11

    Sala, O. E. et al. Biodiversity—global biodiversity scenarios for the year 2100. Science 287, 1770–1774 (2000).

    CAS  Article  Google Scholar 

  12. 12

    Conti, M. E. & Cecchetti, G. Biological monitoring: lichens as bioindicators of air pollution assessment—a review. Environ. Pollut. 114, 471–492 (2001).

    CAS  Article  Google Scholar 

  13. 13

    Donald, P. F., Green, R. E. & Heath, M. F. Agricultural intensification and the collapse of Europe’s farmland bird populations. Proc. R. Soc. Lond. B 268, 25–29 (2001).

    Article  Google Scholar 

  14. 14

    Burns, F. et al. Agricultural management and climatic change are the major drivers of biodiversity change in the UK. PLoS ONE 11, e0151595 (2016).

    Article  Google Scholar 

  15. 15

    Adrian, R., Gerten, D., Huber, V., Wagner, C. & Schmidt, S. R. Windows of change: temporal scale of analysis is decisive to detect ecosystem responses to climate change. Mar. Biol. 159, 2533–2542 (2012).

    Article  Google Scholar 

  16. 16

    Guisan, A. & Thuiller, W. Predicting species distribution: offering more than simple habitat models. Ecol. Lett. 8, 993–1009 (2005); erratum 10, 435–435 (2007).

    Article  Google Scholar 

  17. 17

    Parmesan, C. et al. Beyond climate change attribution in conservation and ecological research. Ecol. Lett. 16, 58–71 (2013).

    Article  Google Scholar 

  18. 18

    Williams, S. E., Shoo, L. P., Isaac, J. L., Hoffmann, A. A. & Langham, G. Towards an integrated framework for assessing the vulnerability of species to climate change. PLoS Biol. 6, 2621–2626 (2008).

    CAS  Article  Google Scholar 

  19. 19

    van Herk, C. M., Aptroot, A. & van Dobben, H. F. Long-term monitoring in the Netherlands suggests that lichens respond to global warming. Lichenologist 34, 141–154 (2002).

    Article  Google Scholar 

  20. 20

    Cahill, A. E. et al. How does climate change cause extinction? Proc. R. Soc. B 280, 20121890 (2013).

    Article  Google Scholar 

  21. 21

    Seppelt, R., Manceur, A. M., Liu, J. G., Fenichel, E. P. & Klotz, S. Synchronized peak-rate years of global resources use. Ecol. Soc. 19, 50 (2014).

    Article  Google Scholar 

  22. 22

    Eglington, S. M. & Pearce-Higgins, J. W. Disentangling the relative importance of changes in climate and land-use intensity in driving recent bird population trends. PLoS ONE 7, e30407 (2012).

    CAS  Article  Google Scholar 

  23. 23

    van Swaay, C., Warren, M. & Lois, G. Biotope use and trends of European butterflies. J. Insect Conserv. 10, 189–209 (2006).

    Article  Google Scholar 

  24. 24

    Venter, O. et al. Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation. Nat. Commun. 7, 12558 (2016).

    CAS  Article  Google Scholar 

  25. 25

    Simpson, S. D. et al. Continental shelf-wide response of a fish assemblage to rapid warming of the sea. Curr. Biol. 21, 1565–1570 (2011).

    CAS  Article  Google Scholar 

  26. 26

    Daufresne, M. & Boet, P. Climate change impacts on structure and diversity of fish communities in rivers. Glob. Change Biol. 13, 2467–2478 (2007).

    Article  Google Scholar 

  27. 27

    Floury, M., Usseglio-Polatera, P., Ferreol, M., Delattre, C. & Souchon, Y. Global climate change in large European rivers: long-term effects on macroinvertebrate communities and potential local confounding factors. Glob. Change Biol. 19, 1085–1099 (2013).

    Article  Google Scholar 

  28. 28

    Jeppesen, E. et al. Impacts of climate warming on the long-term dynamics of key fish species in 24 European lakes. Hydrobiologia 694, 1–39 (2012).

    CAS  Article  Google Scholar 

  29. 29

    Wagner, C. & Adrian, R. Consequences of changes in thermal regime for plankton diversity and trait composition in a polymictic lake: a matter of temporal scale. Freshwat. Biol. 56, 1949–1961 (2011).

    Article  Google Scholar 

  30. 30

    Devictor, V., Julliard, R., Couvet, D. & Jiguet, F. Birds are tracking climate warming, but not fast enough. Proc. R. Soc. B 275, 2743–2748 (2008).

    Article  Google Scholar 

  31. 31

    Clavero, M., Villero, D. & Brotons, L. Climate change or land use dynamics: do we know what climate change indicators indicate? PLoS ONE 6, e18581 (2011).

    Article  Google Scholar 

  32. 32

    Guisan, A. & Thuiller, W. Predicting species distribution: offering more than simple habitat models. Ecol. Lett. 8, 993–1009 (2005).

    Article  Google Scholar 

  33. 33

    Storlie, C. et al. Stepping inside the niche: microclimate data are critical for accurate assessment of species’ vulnerability to climate change. Biol. Lett. 10, 20140576 (2014).

    Article  Google Scholar 

  34. 34

    Homburg, K., Homburg, N., Schaefer, F., Schuldt, A. & Assmann, T. Carabids. org—A dynamic online database of ground beetle species traits (Coleoptera, Carabidae). Insect Conserv. Div. 7, 195–205 (2014).

    Article  Google Scholar 

  35. 35

    Burkhardt, U. et al. The Edaphobase project of GBIF-Germany—a new online soil-zoological data warehouse. Appl. Soil Ecol. 83, 3–12 (2014).

    Article  Google Scholar 

  36. 36

    Poloczanska, E. S. et al. Global imprint of climate change on marine life. Nat. Clim. Change 3, 919–925 (2013).

    Article  Google Scholar 

  37. 37

    Rue, H., Martino, S. & Chopin, N. Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. J. R. Stat. Soc. B 71, 319–392 (2009).

    Article  Google Scholar 

  38. 38

    Haylock, M. R. et al. A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006. J. Geophys. Res. 113, D20119 (2008).

    Article  Google Scholar 

  39. 39

    Caissie, D. The thermal regime of rivers: a review. Freshwat. Biol. 51, 1389–1406 (2006).

    Article  Google Scholar 

  40. 40

    Kaschner, K. et al. AquaMaps Environmental Dataset: Half-Degree Cells Authority File (HCAF) v. 07/2010 (AquaMaps, accessed 25 July 2013);

    Google Scholar 

  41. 41

    Grewe, Y., Hof, C., Dehling, D. M., Brandl, R. & Brandle, M. Recent range shifts of European dragonflies provide support for an inverse relationship between habitat predictability and dispersal. Glob. Ecol. Biogeogr. 22, 403–409 (2013).

    Article  Google Scholar 

  42. 42

    Devictor, V., Julliard, R. & Jiguet, F. Distribution of specialist and generalist species along spatial gradients of habitat disturbance and fragmentation. Oikos 117, 507–514 (2008).

    Article  Google Scholar 

  43. 43

    Penone, C. et al. Imputation of missing data in life-history trait datasets: which approach performs the best? Methods Ecol. Evol. 5, 961–970 (2014).

    Article  Google Scholar 

  44. 44

    Koller, M. & Stahel, W. A. Sharpening Wald-type inference in robust regression for small samples. Comput. Stat. Data Anal. 55, 2504–2515 (2011).

    Article  Google Scholar 

  45. 45

    Domisch, S. et al. Modelling distribution in European stream macroinvertebrates under future climates. Glob. Change Biol. 19, 752–762 (2013).

    Article  Google Scholar 

  46. 46

    Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–448 (2012).

    CAS  Article  Google Scholar 

  47. 47

    Drummond, A. J., Suchard, M. A., Xie, D. & Rambaut, A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 29, 1969–1973 (2012).

    CAS  Article  Google Scholar 

  48. 48

    Fritz, S. A., Bininda-Emonds, O. R. P. & Purvis, A. Geographical variation in predictors of mammalian extinction risk: big is bad, but only in the tropics. Ecol. Lett. 12, 538–549 (2009).

    Article  Google Scholar 

  49. 49

    Durka, W. & Michalski, S. G. Daphne: a dated phylogeny of a large European flora for phylogenetically informed ecological analyses. Ecology 93, 2297–2297 (2012).

    Google Scholar 

  50. 50

    Dunger, W. & Burkhardt, U. Synopses on Palearctic Collembola (Museum Natural History, Görlitz, 2012).

    Google Scholar 

  51. 51

    Guiry, M. D. & Guiry, G. M. AlgaeBase (National University of Ireland, 2017);

  52. 52

    Münkemüller, T. et al. How to measure and test phylogenetic signal. Methods Ecol. Evol. 3, 743–756 (2012).

    Article  Google Scholar 

  53. 53

    Jombart, T., Balloux, F. & Dray, S. Adephylo: new tools for investigating the phylogenetic signal in biological traits. Bioinformatics 26, 1907–1909 (2010).

    CAS  Article  Google Scholar 

  54. 54

    Paradis, E., Claude, J. & Strimmer, K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004).

    CAS  Article  Google Scholar 

  55. 55

    Nakagawa, S. & Cuthill, I. C. Effect size, confidence interval and statistical significance: a practical guide for biologists. Biol. Rev. 82, 591–605 (2007).

    Article  Google Scholar 

  56. 56

    Koricheva, J., Gurevitch, J. & Mengersen, K. Handbook of Meta-analysis in Ecology and Evolution (Princeton Univ. Press, 2013).

    Google Scholar 

  57. 57

    R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2013).

Download references


We thank Bayerisches Landesamt für Umwelt, Sächsisches Landesamt für Umwelt, Landwirtschaft und Geologie, Landesanstalt für Umwelt, Messungen und Naturschutz Baden-Württemberg, Landesamt für Natur, Umwelt und Verbraucherschutz Nordrhein-Westfalen, Hessisches Landesamt für Umwelt und Geologie and the Trilateral Monitoring and Assessment Program (TMAP) for sharing and providing permission to use their data for our project. Additionally, we appreciate the open access marine data provided by the International Council for the Exploration of the Sea. We thank the following scientists for taxonomic or technical advice: C. Brendel, T. Caprano, R. Claus, K. Desender, A. Flakus, P. R. Flakus, S. Fritz, E.-M. Gerstner, J.-P. Maelfait, E.-L. Neuschulz, S. Pauls, C. Printzen, I. Schmitt and H. Turin, and I. Bartomeus for comments on a previous version of the manuscript. R.A. was supported by the EU-project LIMNOTIP funded under the seventh European Commission Framework Programme (FP7) ERA-Net Scheme (Biodiversa, 01LC1207A) and the long-term ecological research program at the Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB). R.W.B. was supported by the Scottish Government Rural and Environment Science and Analytical Services Division (RESAS) through Theme 3 of their Strategic Research Programme. S.D. acknowledges support of the German Research Foundation DFG (grant DO 1880/1-1). S.S. acknowledges the support from the FP7 project EU BON (grant no. 308454). S.K., I.Kü. and O.S. acknowledge funding thorough the Helmholtz Association’s Programme Oriented Funding, Topic ‘Land use, biodiversity, and ecosystem services: Sustaining human livelihoods’. O.S. also acknowledges the support from FP7 via the Integrated Project STEP (grant no. 244090). D.E.B. was funded by a Landes–Offensive zur Entwicklung Wissenschaftlich–ökonomischer Exzellenz (LOEWE) excellence initiative of the Hessian Ministry for Science and the Arts and the German Research Foundation (DFG: Grant no. BO 1221/23-1).

Author information




D.E.B. performed the analysis and wrote the outline of the paper with K.B.G. The study and analysis was perceived and designed by D.E.B., C.H., P.H., I.Kr., O.S. and K.B.G. All remaining authors contributed data towards the analysis. All authors helped draft the manuscript.

Corresponding author

Correspondence to Diana E. Bowler.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures 1–12; Supplementary Tables 1–5 (PDF 2190 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bowler, D., Hof, C., Haase, P. et al. Cross-realm assessment of climate change impacts on species’ abundance trends. Nat Ecol Evol 1, 0067 (2017).

Download citation

Further reading