Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Female plasticity tends to reduce sexual conflict

Abstract

Sexual conflict is the divergence of evolutionary interests between the sexes. A neglected aspect of sexual conflict theory is that the conflict often occurs within the female’s body, which can lead to a power asymmetry between the sexes. In particular, the female may often be able to respond flexibly to the actions of the male, and so exhibits plasticity. Here, we consider the implications of female plasticity, and find that it tends to result in lower levels of sexual conflict. We then relate our results to a comparison of pre- versus post-copulatory sexual conflict, and we also show that this asymmetry between males and females reduces the likelihood of runaway selection, preventing co-evolutionary arms races. Finally, we discuss our results in the context of the evolution of adaptive harm and sexual conflict when there are direct benefits.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Existence of a co-evolutionary outcome for the sequential game despite the simultaneous game predicting runaway selection.

References

  1. Trivers, R. L. in Sexual Selection and the Descent of Man (ed. Campbell, B. ) 136–179 (Aladine, 1972).

    Google Scholar 

  2. Parker, G. in Sexual Selection and Reproductive Competition in Insects (eds Blum, M. & Blum, N. A. ) 123–166 (Academic, 1979).

    Google Scholar 

  3. Chapman, T., Arnqvist, G., Bangham, J. & Rowe, L. Sexual conflict. Trends Ecol. Evol. 18, 41–47 (2003).

    Article  Google Scholar 

  4. Arnqvist, G. & Rowe, L. Sexual Conflict (Princeton Univ. Press, 2005).

    Book  Google Scholar 

  5. Arnqvist, G. & Rowe, L. Antagonistic coevolution between the sexes in a group of insects. Nature 415, 787–789 (2002).

    CAS  Article  Google Scholar 

  6. Sirot, L. K., Wong, A., Chapman, T. & Wolfner, M. F. Sexual conflict and seminal fluid proteins: a dynamic landscape of sexual interactions. Cold Spring Harb. Perspect. Biol. 7, 1–24 (2014).

    Google Scholar 

  7. Civetta, A. & Clark, A. G. Correlated effects of sperm competition and postmating female mortality. Proc. Natl Acad. Sci. USA 97, 13162–13165 (2000).

    CAS  Article  Google Scholar 

  8. Wigby, S. & Chapman, T. Sex peptide causes mating costs in female Drosophila melanogaster . Curr. Biol. 15, 316–321 (2005).

    CAS  Article  Google Scholar 

  9. Fricke, C., Bretman, A. & Chapman, T. Female nutritional status determines the magnitude and sign of responses to a male ejaculate signal in Drosophila melanogaster . J. Evol. Biol. 23, 157–165 (2010).

    CAS  Article  Google Scholar 

  10. Chapman, T., Liddle, L. F., Kalb, J. M., Wolfner, M. F. & Partridge, L. Cost of mating in Drosophila melanogaster females is mediated by male accessory gland products. Nature 373, 241–244 (1995).

    CAS  Article  Google Scholar 

  11. Rice, W. Sexually antagonistic male adaptation triggered by experimental arrest of female evolution. Nature 381, 232–234 (1996).

    CAS  Article  Google Scholar 

  12. Abbott, J. K., Innocenti, P., Chippindale, A. K. & Morrow, E. H. Epigenetics and sex-specific fitness: an experimental test using male-limited evolution in Drosophila melanogaster . PLoS ONE 8, e70493 (2013).

    CAS  Article  Google Scholar 

  13. Gavrilets, S. Rapid evolution of reproductive barriers driven by sexual conflict. Nature 403, 886–889 (2000).

    CAS  Article  Google Scholar 

  14. Gavrilets, S., Arnqvist, G. & Friberg, U. The evolution of female mate choice by sexual conflict. Proc. R. Soc. Lond. B 268, 531–539 (2001).

    CAS  Article  Google Scholar 

  15. Gavrilets, S. & Waxman, D. Sympatric speciation by sexual conflict. Proc. Natl Acad. Sci. USA 99, 10533–10538 (2002).

    CAS  Article  Google Scholar 

  16. Rowe, L., Cameron, E. & Day, T. Escalation, retreat, and female indifference as alternative outcomes of sexually antagonistic coevolution. Am. Nat. 165, S5–S18 (2005).

    Article  Google Scholar 

  17. Clutton-Brock, T. H. & Parker, G. A. Sexual coercion in animal societies. Anim. Behav. 49, 1345–1365 (1995).

    Article  Google Scholar 

  18. Eberhard, W. G. Female Control: Sexual Selection by Cryptic Female Choice (Princeton Univ. Press, 1996).

    Google Scholar 

  19. Parker, G. A. Sexual conflict over mating and fertilization: an overview. Phil. Trans. R. Soc. B 361, 235–259 (2006).

    CAS  Article  Google Scholar 

  20. Holland, B. & Rice, W. R. Chase-away sexual selection: antagonistic seduction versus resistance. Evolution 52, 1–7 (1998).

    Article  Google Scholar 

  21. Chapman, T. Evolutionary conflicts of interest between males and females. Curr. Biol. 16, R744–R754 (2006).

    CAS  Article  Google Scholar 

  22. McNamara, J. M. & Dall, S. R. X. Information is a fitness enhancing resource. Oikos 119, 231–236 (2010).

    Article  Google Scholar 

  23. McNamara, J. M., Gasson, C. E. & Houston, A. I. Incorporating rules for responding into evolutionary games. Nature 401, 368–371 (1999).

    CAS  Google Scholar 

  24. Lupold, S. et al. How sexual selection can drive the evolution of costly sperm ornamentation. Nature 533, 535–538 (2016).

    CAS  Article  Google Scholar 

  25. Schneider, M. R., Mangels, R. & Dean, M. D. The molecular basis and reproductive function(s) of copulatory plugs. Mol. Reprod. Dev. 83, 755–767 (2016).

    CAS  Article  Google Scholar 

  26. Koprowski, J. L. Removal of copulatory plugs by female tree squirrels. J. Mammal. 73, 572–576 (1992).

    Article  Google Scholar 

  27. Kelleher, E. S. & Pennington, J. E. Protease gene duplication and proteolytic activity in Drosophila female reproductive tracts. Mol. Biol. Evol. 26, 2125–2134 (2009).

    CAS  Article  Google Scholar 

  28. Dean, M. D. et al. Identification of ejaculated proteins in the house mouse (Mus domesticus) via isotopic labeling. BMC Genomics 12, 306 (2011).

    CAS  Article  Google Scholar 

  29. Mangels, R. et al. Genetic and phenotypic influences on copulatory plug survival in mice. Heredity 115, 496–502 (2015).

    CAS  Article  Google Scholar 

  30. Chapman, T. et al. The sex peptide of Drosophila melanogaster: female post-mating responses analyzed by using RNA interference. Proc. Natl Acad. Sci. USA 100, 9923–9928 (2003).

    CAS  Article  Google Scholar 

  31. Ravi Ram, K. & Wolfner, M. F. Seminal influences: Drosophila Acps and the molecular interplay between males and females during reproduction. Integr. Comp. Biol. 47, 427–445 (2007).

    CAS  Article  Google Scholar 

  32. Pilpel, N., Nezer, I., Applebaum, S. W. & Heifetz, Y. Mating-increases trypsin in female Drosophila hemolymph. Insect Biochem. Mol. Biol. 38, 320–330 (2008).

    CAS  Article  Google Scholar 

  33. Prokupek, A. M., Kachman, S. D., Ladunga, I. & Harshman, L. G. Transcriptional profiling of the sperm storage organs of Drosophila melanogaster . Insect Mol. Biol. 18, 465–475 (2009).

    CAS  Article  Google Scholar 

  34. Johnstone, R. A. & Keller, L. How males can gain by harming their mates: sexual conflict, seminal toxins, and the cost of mating. Am. Nat. 156, 368–377 (2000).

    Article  Google Scholar 

  35. Lessells, C. M. Why are males bad for females? Models for the evolution of damaging male mating behavior. Am. Nat. 165, S46–S63 (2005).

    Article  Google Scholar 

  36. Morrow, E., Arnqvist, G. & Pitnick, S. Adaptation versus pleiotropy: why do males harm their mates? Behav. Ecol. 14, 802–806 (2003).

    Article  Google Scholar 

  37. Vahed, K. The function of nuptial feeding in insects: a review of empirical studies. Biol. Rev. 73, 43–78 (1998).

    Article  Google Scholar 

  38. Arnqvist, G. & Nilsson, T. The evolution of polyandry: multiple mating and female fitness in insects. Anim. Behav. 60, 145–164 (2000).

    CAS  Article  Google Scholar 

  39. Karlsson, B. Resource allocation and mating systems in butterflies. Evolution 49, 955–961 (1995).

    Article  Google Scholar 

  40. Pike, R. K., McNamara, J. M. & Houston, A. I. A general expression for the reproductive value of information. Behav. Ecol. (in the press).

Download references

Acknowledgements

We thank L. Rowe for comments on an earlier version of the manuscript. Funding support was provided through an NSERC scholarship to D.V.M. and an NSERC grant to T.D.

Author information

Authors and Affiliations

Authors

Contributions

D.V.M. and T.D. formulated the research question, designed and analysed the model, and wrote the manuscript.

Corresponding author

Correspondence to David V. McLeod.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary modelling; Supplementary Figures 1,2 (PDF 235 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

McLeod, D., Day, T. Female plasticity tends to reduce sexual conflict. Nat Ecol Evol 1, 0054 (2017). https://doi.org/10.1038/s41559-016-0054

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41559-016-0054

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing